Parallel construction of RNA databases for extensive lncRNA-RNA interaction prediction

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-03-27 DOI:10.1145/3555776.3577772
Iñaki Amatria-Barral, J. González-Domínguez, J. Touriño
{"title":"Parallel construction of RNA databases for extensive lncRNA-RNA interaction prediction","authors":"Iñaki Amatria-Barral, J. González-Domínguez, J. Touriño","doi":"10.1145/3555776.3577772","DOIUrl":null,"url":null,"abstract":"Long non-coding RNA sequences (lncRNAs) have completely changed how scientists approach genetics. While some believe that many lncRNAs are results of spurious transcriptions, recent evidence suggests that there exist thousands of them and that they have functions and regulate key biological processes. For the experimental characterization of lncRNAs, many tools that try to predict their interactions with other RNAs have been developed. Some of the fastest and more accurate tools, however, require a slow database construction step prior to the identification of interaction partners for each lncRNA. This paper presents a novel and efficient parallel database construction procedure. Benchmarking results on a 16-node multicore cluster show that our parallel algorithm can build databases up to 318 times faster than other tools in the market using just 256 CPU cores. All the code developed in this work is available to download at GitHub under the MIT License (https://github.com/UDC-GAC/pRIblast).","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Long non-coding RNA sequences (lncRNAs) have completely changed how scientists approach genetics. While some believe that many lncRNAs are results of spurious transcriptions, recent evidence suggests that there exist thousands of them and that they have functions and regulate key biological processes. For the experimental characterization of lncRNAs, many tools that try to predict their interactions with other RNAs have been developed. Some of the fastest and more accurate tools, however, require a slow database construction step prior to the identification of interaction partners for each lncRNA. This paper presents a novel and efficient parallel database construction procedure. Benchmarking results on a 16-node multicore cluster show that our parallel algorithm can build databases up to 318 times faster than other tools in the market using just 256 CPU cores. All the code developed in this work is available to download at GitHub under the MIT License (https://github.com/UDC-GAC/pRIblast).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行构建RNA数据库,广泛预测lncRNA-RNA相互作用
长链非编码RNA序列(lncRNAs)已经完全改变了科学家研究遗传学的方式。虽然一些人认为许多lncrna是虚假转录的结果,但最近的证据表明,它们存在数千个,并且它们具有功能并调节关键的生物过程。对于lncrna的实验表征,已经开发了许多工具,试图预测它们与其他rna的相互作用。然而,一些最快和更准确的工具需要在确定每个lncRNA的相互作用伙伴之前进行缓慢的数据库构建步骤。本文提出了一种新的、高效的并行数据库构建方法。在16节点多核集群上的基准测试结果表明,我们的并行算法构建数据库的速度比市场上仅使用256个CPU内核的其他工具快318倍。本工作中开发的所有代码都可以根据MIT许可证(https://github.com/UDC-GAC/pRIblast)在GitHub上下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1