Analyzing gene coexpression data by an evolutionary model.

M. Schütte, M. Mutwil, S. Persson, O. Ebenhöh
{"title":"Analyzing gene coexpression data by an evolutionary model.","authors":"M. Schütte, M. Mutwil, S. Persson, O. Ebenhöh","doi":"10.1142/9781848166585_0013","DOIUrl":null,"url":null,"abstract":"Coexpressed genes are tentatively translated into proteins that are involved in similar biological functions. Here, we constructed gene coexpression networks from collected microarray data of the organisms Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli. Their degree distributions show the common property of an overrepresentation of highly connected nodes followed by a sudden truncation. In order to analyze this behavior, we present an evolutionary model simulating the genetic evolution. This model assumes that new genes emerge by duplication from a small initial set of primordial genes. Our model does not include the removal of unused genes but selective pressure is indirectly taken into account by preferentially duplicating the old genes. Thus, gene duplication represents the emergence of a new gene and its successful establishment. After a duplication event, all genes are slightly but iteratively mutated, thus altering their expression patterns. Our model is capable of reproducing global properties of the investigated coexpression networks. We show that our model reflects the mean inter-node distances and especially the characteristic humps in the degree distribution that, in the biological examples, result from functionally related genes.","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":"33 1","pages":"154-63"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848166585_0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coexpressed genes are tentatively translated into proteins that are involved in similar biological functions. Here, we constructed gene coexpression networks from collected microarray data of the organisms Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli. Their degree distributions show the common property of an overrepresentation of highly connected nodes followed by a sudden truncation. In order to analyze this behavior, we present an evolutionary model simulating the genetic evolution. This model assumes that new genes emerge by duplication from a small initial set of primordial genes. Our model does not include the removal of unused genes but selective pressure is indirectly taken into account by preferentially duplicating the old genes. Thus, gene duplication represents the emergence of a new gene and its successful establishment. After a duplication event, all genes are slightly but iteratively mutated, thus altering their expression patterns. Our model is capable of reproducing global properties of the investigated coexpression networks. We show that our model reflects the mean inter-node distances and especially the characteristic humps in the degree distribution that, in the biological examples, result from functionally related genes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用进化模型分析基因共表达数据。
共表达基因被暂时翻译成参与类似生物功能的蛋白质。在这里,我们利用收集到的拟南芥、酿酒酵母和大肠杆菌的微阵列数据构建了基因共表达网络。它们的度分布显示了高度连接节点的过度表示和突然截断的共同特性。为了分析这种行为,我们提出了一个模拟遗传进化的进化模型。这个模型假定新的基因是由一小部分原始基因的复制而产生的。我们的模型不包括去除不使用的基因,但通过优先复制旧基因间接考虑了选择压力。因此,基因复制代表了新基因的出现和成功建立。在重复事件发生后,所有的基因都发生了轻微但反复的突变,从而改变了它们的表达模式。我们的模型能够再现所研究的共表达网络的全局属性。我们表明,我们的模型反映了平均节点间距离,特别是度分布中的特征峰,在生物学示例中,这是由功能相关基因引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking-calculation-based method for predicting protein-RNA interactions. Sign: large-scale gene network estimation environment for high performance computing. Linear regression models predicting strength of transcriptional activity of promoters. Database for crude drugs and Kampo medicine. Mechanism of cell cycle disruption by multiple p53 pulses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1