IMERG Precipitation Improves the SMAP Level-4 Soil Moisture Product

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Hydrometeorology Pub Date : 2023-07-21 DOI:10.1175/jhm-d-23-0063.1
R. Reichle, Qing Liu, J. Ardizzone, W. Crow, Gabrielle J. M. De Lannoy, J. Kimball, R. Koster
{"title":"IMERG Precipitation Improves the SMAP Level-4 Soil Moisture Product","authors":"R. Reichle, Qing Liu, J. Ardizzone, W. Crow, Gabrielle J. M. De Lannoy, J. Kimball, R. Koster","doi":"10.1175/jhm-d-23-0063.1","DOIUrl":null,"url":null,"abstract":"\nThe NASA Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides global, 9-km resolution, 3-hourly surface and root-zone soil moisture from April 2015 to present with a mean latency of 2.5 days from the time of observation. The L4_SM algorithm assimilates SMAP L-band (1.4 GHz) brightness temperature (Tb) observations into the NASA Catchment land surface model as the model is driven with observation-based precipitation. This paper describes and evaluates the use of satellite- and gauge-based precipitation from the NASA Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (IMERG) products in the L4_SM algorithm beginning with L4_SM Version 6. Specifically, IMERG is used in two ways: (i) The L4_SM precipitation reference climatology is primarily based on IMERG-Final (Version 06B) data, replacing the Global Precipitation Climatology Project version 2.2 data used in previous L4_SM versions, and (ii) the precipitation forcing outside of North America and the high latitudes is corrected to match the daily totals from IMERG, replacing the gauge-only, daily product or uncorrected weather analysis precipitation used there in earlier L4_SM versions. The use of IMERG precipitation improves the anomaly time series correlation coefficient of L4_SM surface soil moisture (versus independent satellite estimates) by 0.03 in the global average and by up to ∼0.3 in parts of South America, Africa, Australia, and East Asia, where the quality of the gauge-only precipitation product used in earlier L4_SM versions is poor. The improvements also reduce the time series standard deviation of the Tb observation-minus-forecast residuals from 5.5 K in L4_SM Version 5 to 5.1 K in Version 6.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0063.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The NASA Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides global, 9-km resolution, 3-hourly surface and root-zone soil moisture from April 2015 to present with a mean latency of 2.5 days from the time of observation. The L4_SM algorithm assimilates SMAP L-band (1.4 GHz) brightness temperature (Tb) observations into the NASA Catchment land surface model as the model is driven with observation-based precipitation. This paper describes and evaluates the use of satellite- and gauge-based precipitation from the NASA Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (IMERG) products in the L4_SM algorithm beginning with L4_SM Version 6. Specifically, IMERG is used in two ways: (i) The L4_SM precipitation reference climatology is primarily based on IMERG-Final (Version 06B) data, replacing the Global Precipitation Climatology Project version 2.2 data used in previous L4_SM versions, and (ii) the precipitation forcing outside of North America and the high latitudes is corrected to match the daily totals from IMERG, replacing the gauge-only, daily product or uncorrected weather analysis precipitation used there in earlier L4_SM versions. The use of IMERG precipitation improves the anomaly time series correlation coefficient of L4_SM surface soil moisture (versus independent satellite estimates) by 0.03 in the global average and by up to ∼0.3 in parts of South America, Africa, Australia, and East Asia, where the quality of the gauge-only precipitation product used in earlier L4_SM versions is poor. The improvements also reduce the time series standard deviation of the Tb observation-minus-forecast residuals from 5.5 K in L4_SM Version 5 to 5.1 K in Version 6.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMERG降水提高了SMAP 4级土壤水分产品
NASA主动被动土壤湿度(SMAP)任务4级土壤湿度(L4_SM)产品提供2015年4月至今的全球9公里分辨率、每3小时的地表和根区土壤湿度,平均延迟时间为2.5天。L4_SM算法将SMAP l波段(1.4 GHz)亮度温度(Tb)观测数据同化到NASA集水区地表模型中,因为该模型是由观测降水驱动的。本文描述并评估了从L4_SM版本6开始的L4_SM算法中,来自NASA综合多卫星检索全球降水测量(IMERG)产品的基于卫星和基于仪表的降水的使用。具体来说,IMERG有两种使用方式:(1) L4_SM降水参考气气学主要基于IMERG- final (Version 06B)数据,取代了以前L4_SM版本中使用的全球降水气气学项目2.2版本数据;(2)对北美和高纬度地区以外的降水强迫进行了校正,以匹配IMERG的日总量,取代了早期L4_SM版本中使用的仅仪表、每日产品或未经校正的天气分析降水。IMERG降水的使用使L4_SM表层土壤湿度的异常时间序列相关系数(相对于独立卫星估计)在全球平均水平上提高了0.03,在南美洲、非洲、澳大利亚和东亚部分地区提高了~ 0.3,这些地区早期L4_SM版本中使用的仅仪表降水产品的质量较差。这些改进还将Tb观测减去预测残差的时间序列标准差从L4_SM版本5的5.5 K降低到版本6的5.1 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrometeorology
Journal of Hydrometeorology 地学-气象与大气科学
CiteScore
7.40
自引率
5.30%
发文量
116
审稿时长
4-8 weeks
期刊介绍: The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.
期刊最新文献
Patterns and trend analysis of rain-on-snow events using passive microwave satellite data over the Canadian Arctic Archipelago since 1987 Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting Upper Colorado River streamflow dependencies on summertime synoptic circulations and hydroclimate variability Analysis of drought characteristics and causes in Yunnan Province in the last 60 years (1961-2020) A machine learning approach to model over ocean tropical cyclone precipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1