Influence of levodropropizine and hydroxypropyl-β-cyclodextrin association on the physicochemical characteristics of levodropropizine loaded in hydroxypropyl-β-cyclodextrin microcontainers: Formulation and in vitro characterization.
A. Yousaf, Alina Qadeer, S. Raza, T. Chohan, Y. Shahzad, F. Din, I. Khan, T. Hussain, M. Alvi, T. Mahmood
{"title":"Influence of levodropropizine and hydroxypropyl-β-cyclodextrin association on the physicochemical characteristics of levodropropizine loaded in hydroxypropyl-β-cyclodextrin microcontainers: Formulation and in vitro characterization.","authors":"A. Yousaf, Alina Qadeer, S. Raza, T. Chohan, Y. Shahzad, F. Din, I. Khan, T. Hussain, M. Alvi, T. Mahmood","doi":"10.17219/pim/111887","DOIUrl":null,"url":null,"abstract":"BACKGROUND Poorly water-soluble drugs do not dissolve well in aqueous-based gastrointestinal fluid; therefore, they are not well absorbed. Thus, employing a suitable solubility enhancing technique is necessary for such a drug. Drug/HP‑β‑CD complexation is a promising way to improve solubility and dissolution of a poorly water-soluble drug. Levodropropizine was used as a model drug in this study. OBJECTIVES The purpose of this research was to enhance the aqueous solubility and dissolution rate of levodropropizine by employing the inclusion complexation technique. MATERIAL AND METHODS A microparticle formulation was prepared from levodropropizine and hydroxypropyl-β-cyclodextrin (HP‑β‑CD) in a 1:1 molar ratio through the spray-drying technique. The host-guest relationship between levodropropizine and HP‑β‑CD was also investigated using the molecular docking computational methodology. The aqueous solubility and dissolution rate of levodropropizine in formulations were assessed and compared with those of the drug alone. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were applied for the solid-state characterization of the prepared samples. RESULTS According to the research outcomes, the levodropropizine/HP‑β‑CD formulation had enhanced the aqueous solubility (351.12 ±13.26 vs 92.76 ±5.00 mg/mL) and dissolution rate (97.83 ±3.36 vs 3.12 ±1.76% in 10 min) of levodropropizine, compared to the plain drug powder. The levodropropizine/ HP‑β‑CD formulation had converted the crystalline drug into its amorphous counterpart. Furthermore, no covalent interaction was found to exist between levodropropizine and HP‑β‑CD. The spray-dried particles were discrete. Each particle had a shriveled appearance. CONCLUSIONS The levodropropizine/HP‑β‑CD formulation is, therefore, recommended for the more effective administration of levodropropizine through the oral route.","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"75 1","pages":"35-43"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/111887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4
Abstract
BACKGROUND Poorly water-soluble drugs do not dissolve well in aqueous-based gastrointestinal fluid; therefore, they are not well absorbed. Thus, employing a suitable solubility enhancing technique is necessary for such a drug. Drug/HP‑β‑CD complexation is a promising way to improve solubility and dissolution of a poorly water-soluble drug. Levodropropizine was used as a model drug in this study. OBJECTIVES The purpose of this research was to enhance the aqueous solubility and dissolution rate of levodropropizine by employing the inclusion complexation technique. MATERIAL AND METHODS A microparticle formulation was prepared from levodropropizine and hydroxypropyl-β-cyclodextrin (HP‑β‑CD) in a 1:1 molar ratio through the spray-drying technique. The host-guest relationship between levodropropizine and HP‑β‑CD was also investigated using the molecular docking computational methodology. The aqueous solubility and dissolution rate of levodropropizine in formulations were assessed and compared with those of the drug alone. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were applied for the solid-state characterization of the prepared samples. RESULTS According to the research outcomes, the levodropropizine/HP‑β‑CD formulation had enhanced the aqueous solubility (351.12 ±13.26 vs 92.76 ±5.00 mg/mL) and dissolution rate (97.83 ±3.36 vs 3.12 ±1.76% in 10 min) of levodropropizine, compared to the plain drug powder. The levodropropizine/ HP‑β‑CD formulation had converted the crystalline drug into its amorphous counterpart. Furthermore, no covalent interaction was found to exist between levodropropizine and HP‑β‑CD. The spray-dried particles were discrete. Each particle had a shriveled appearance. CONCLUSIONS The levodropropizine/HP‑β‑CD formulation is, therefore, recommended for the more effective administration of levodropropizine through the oral route.
背景:水溶性差的药物不能很好地溶解在水基胃肠道液体中;因此,它们不能很好地吸收。因此,对这种药物采用合适的溶解度增强技术是必要的。药物/HP‑β‑CD络合是一种很有前途的方法来改善水溶性差的药物的溶解度和溶出度。本研究以左旋丙哌嗪为模型药物。目的采用包合技术提高左丙哌嗪的溶解度和溶出度。材料与方法以左丙丙哌嗪和羟丙基-β-环糊精(HP -β- CD)为原料,采用喷雾干燥技术,以1:1的摩尔比制备sa微粒制剂。利用分子对接计算方法研究了左旋丙哌嗪与HP‑β‑CD的主客关系。评价了左旋丙哌嗪在制剂中的溶解度和溶出度,并与单用左旋丙哌嗪进行了比较。采用x射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM)和傅里叶变换红外光谱(FTIR)对制备的样品进行了固态表征。结果左旋丙哌嗪/HP‑β‑CD制剂的溶解度(351.12±13.26 vs 92.76±5.00 mg/mL)和溶出度(97.83±3.36 vs 3.12±1.76%,10 min)均高于普通药粉;左旋丙哌嗪/ HP‑β‑CD制剂将晶体药物转化为非晶态药物。此外,左旋丙哌嗪与HP‑β‑CD之间不存在共价相互作用。喷雾干燥的颗粒是离散的。每个粒子都有一个收缩的外观。结论左旋丙嗪/HP‑β‑CD是口服左旋丙嗪更有效的给药方式。