Data-selective LMS-Newton and LMS-Quasi-Newton Algorithms

C. Tsinos, P. Diniz
{"title":"Data-selective LMS-Newton and LMS-Quasi-Newton Algorithms","authors":"C. Tsinos, P. Diniz","doi":"10.1109/ICASSP.2019.8683076","DOIUrl":null,"url":null,"abstract":"The huge volume of data that are available today requires data-selective processing approaches that avoid the costs in computational complexity via appropriately treating the non-innovative data. In this paper, extensions of the well-known adaptive filtering LMS-Newton and LMS-Quasi-Newton Algorithms are developed that enable data selection while also addressing the censorship of outliers that emerge due to high measurement errors. The proposed solutions allow the prescription of how often the acquired data are expected to be incorporated into the learning process based on some a priori information regarding the environment. Simulation results on both synthetic and real-world data verify the effectiveness of the proposed algorithms that may achieve significant reductions in computational costs without sacrificing estimation accuracy due to the selection of the data.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"37 1","pages":"4848-4852"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The huge volume of data that are available today requires data-selective processing approaches that avoid the costs in computational complexity via appropriately treating the non-innovative data. In this paper, extensions of the well-known adaptive filtering LMS-Newton and LMS-Quasi-Newton Algorithms are developed that enable data selection while also addressing the censorship of outliers that emerge due to high measurement errors. The proposed solutions allow the prescription of how often the acquired data are expected to be incorporated into the learning process based on some a priori information regarding the environment. Simulation results on both synthetic and real-world data verify the effectiveness of the proposed algorithms that may achieve significant reductions in computational costs without sacrificing estimation accuracy due to the selection of the data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据选择性LMS-Newton和lms -准牛顿算法
当今的海量数据需要数据选择性处理方法,通过适当处理非创新数据来避免计算复杂性的成本。在本文中,开发了著名的自适应滤波LMS-Newton和lms -准牛顿算法的扩展,使数据选择成为可能,同时也解决了由于高测量误差而出现的异常值的审查问题。建议的解决方案允许根据有关环境的一些先验信息,规定预期将获得的数据纳入学习过程的频率。在合成数据和实际数据上的仿真结果验证了所提出算法的有效性,该算法可以在不牺牲由于数据选择而导致的估计精度的情况下显著降低计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1