Incremental Approach to Classification Learning

Xenia A. Naidenova
{"title":"Incremental Approach to Classification Learning","authors":"Xenia A. Naidenova","doi":"10.4018/978-1-5225-2255-3.CH017","DOIUrl":null,"url":null,"abstract":"An approach to incremental classification learning is proposed. Classification learning is based on approximation of a given partitioning of objects into disjointed blocks in multivalued space of attributes. Good approximation is defined in the form of good maximally redundant classification test or good formal concept. A concept of classification context is introduced. Four situations of incremental modification of classification context are considered: adding and deleting objects and adding and deleting values of attributes. Algorithms of changing good concepts in these incremental situations are given and proven.","PeriodicalId":52560,"journal":{"name":"Foundations and Trends in Human-Computer Interaction","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-2255-3.CH017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

An approach to incremental classification learning is proposed. Classification learning is based on approximation of a given partitioning of objects into disjointed blocks in multivalued space of attributes. Good approximation is defined in the form of good maximally redundant classification test or good formal concept. A concept of classification context is introduced. Four situations of incremental modification of classification context are considered: adding and deleting objects and adding and deleting values of attributes. Algorithms of changing good concepts in these incremental situations are given and proven.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类学习的增量方法
提出了一种增量分类学习方法。分类学习是基于在属性的多值空间中将给定的对象划分为不相交的块的近似。良好的近似以良好的最大冗余分类检验或良好的形式概念的形式定义。引入了分类上下文的概念。考虑了分类上下文增量修改的四种情况:对象的添加和删除以及属性值的添加和删除。给出并证明了在这些增量情况下的好概念变换算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Foundations and Trends in Human-Computer Interaction
Foundations and Trends in Human-Computer Interaction Computer Science-Computer Science Applications
CiteScore
10.10
自引率
0.00%
发文量
2
期刊介绍: Foundations and Trends® in Human-Computer Interaction publishes surveys and tutorials in the following topics: - History of the research community - Design and Evaluation - Theory - Technology - Computer Supported Cooperative Work - Interdisciplinary influence - Advanced topics and trends - Information visualization
期刊最新文献
The Roles and Modes of Human Interactions with Automated Machine Learning Systems: A Critical Review and Perspectives Artificial Intelligence Review Computer-Assisted Parallel Program Generation Eight Tips for the Theme “Data and Forecasts” Telesurgical Robotics and a Kinematic Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1