An Application of Machine Learning to Forecast Hypertension Signals in Intracranial Pressure: A Comparison of Various Algorithms

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS IEEE Systems Man and Cybernetics Magazine Pub Date : 2022-01-01 DOI:10.1109/MSMC.2021.3097982
Arif Jahangir, Kavyan Tirdad, Alex Dela Cruz, Alireza Sadeghian, Michael Cusimano
{"title":"An Application of Machine Learning to Forecast Hypertension Signals in Intracranial Pressure: A Comparison of Various Algorithms","authors":"Arif Jahangir, Kavyan Tirdad, Alex Dela Cruz, Alireza Sadeghian, Michael Cusimano","doi":"10.1109/MSMC.2021.3097982","DOIUrl":null,"url":null,"abstract":"The objective of the work presented in this article is to investigate the applicability of lightweight machine learning (ML) algorithms capable of detecting and forecasting hypertensive (HT) episodes from historical intracranial pressure (ICP) signals. Specifically, we aim at identifying noncomputationally dependent algorithms, which can be supported by lightweight hardware such as medical monitoring devices. We also propose applicable algorithms, which can be trained with a limited number of labeled samples due to the unfeasibility of manually labeling large volumes of ICP signals in most instances.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"76 1","pages":"29-38"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMC.2021.3097982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the work presented in this article is to investigate the applicability of lightweight machine learning (ML) algorithms capable of detecting and forecasting hypertensive (HT) episodes from historical intracranial pressure (ICP) signals. Specifically, we aim at identifying noncomputationally dependent algorithms, which can be supported by lightweight hardware such as medical monitoring devices. We also propose applicable algorithms, which can be trained with a limited number of labeled samples due to the unfeasibility of manually labeling large volumes of ICP signals in most instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在预测颅内压高血压信号中的应用:各种算法的比较
本文提出的工作目的是研究轻量级机器学习(ML)算法的适用性,该算法能够从历史颅内压(ICP)信号中检测和预测高血压(HT)发作。具体来说,我们的目标是识别非计算依赖的算法,这些算法可以由轻量级硬件(如医疗监测设备)支持。我们还提出了适用的算法,由于在大多数情况下手工标记大量ICP信号是不可行的,因此可以使用有限数量的标记样本进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
期刊最新文献
Report of the First IEEE International Summer School (Online) on Environments—Classes, Agents, Roles, Groups, and Objects and Its Applications [Conference Reports] Saeid Nahavandi: Academic, Innovator, Technopreneur, and Thought Leader [Society News] IEEE Foundation IEEE Feedback Artificial Intelligence for the Social Internet of Things: Analysis and Modeling Using Collaborative Technologies [Special Section Editorial]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1