{"title":"Merged Switched-Capacitor Piezoelectric-Resonator Based DC-DC Converter with High Voltage Conversion Ratio","authors":"Qijia Li, Yuetao Hou, K. Afridi","doi":"10.1109/COMPEL52896.2023.10221132","DOIUrl":null,"url":null,"abstract":"Piezoelectric devices have recently emerged as a promising candidate to replace magnetic components. Past research has explored different topologies and control strategies for dc-dc converters which only use a single piezoelectric resonator as the main energy-storage component. However, such converters exhibit relatively low efficiency when the voltage conversion ratio deviates from its nominal value. In this paper, a new merged switched-capacitor piezoelectric-resonator based dc-dc converter which can achieve high and flat efficiency across a wide voltage conversion ratio is proposed. The switched capacitor and the piezoelectric resonator are combined in the proposed converter to form a multi-level structure and controlled in a manner to achieve high efficiency across a wide voltage conversion ratio. The proposed topology and control strategy enable the switched capacitor to be soft-charged by the current from the piezoelectric resonator and achieve zero-voltage-switching (ZVS) for all its switches. The steady-state operation of the proposed converter is analyzed in detail. Simulation and experimental results are presented to verify the advantages of the proposed converter. Finally, a family of merged switched-capacitor piezoelectric-resonator based dc-dc converters, based on the proposed principle, is also presented.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"89 1","pages":"1-8"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221132","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Piezoelectric devices have recently emerged as a promising candidate to replace magnetic components. Past research has explored different topologies and control strategies for dc-dc converters which only use a single piezoelectric resonator as the main energy-storage component. However, such converters exhibit relatively low efficiency when the voltage conversion ratio deviates from its nominal value. In this paper, a new merged switched-capacitor piezoelectric-resonator based dc-dc converter which can achieve high and flat efficiency across a wide voltage conversion ratio is proposed. The switched capacitor and the piezoelectric resonator are combined in the proposed converter to form a multi-level structure and controlled in a manner to achieve high efficiency across a wide voltage conversion ratio. The proposed topology and control strategy enable the switched capacitor to be soft-charged by the current from the piezoelectric resonator and achieve zero-voltage-switching (ZVS) for all its switches. The steady-state operation of the proposed converter is analyzed in detail. Simulation and experimental results are presented to verify the advantages of the proposed converter. Finally, a family of merged switched-capacitor piezoelectric-resonator based dc-dc converters, based on the proposed principle, is also presented.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.