A Probabilistic Model for the Fallout Area of Single Glazing under Radiant Heat Exposure

D. Wong, K. Li, M. Spearpoint
{"title":"A Probabilistic Model for the Fallout Area of Single Glazing under Radiant Heat Exposure","authors":"D. Wong, K. Li, M. Spearpoint","doi":"10.3801/iafss.fss.11-444","DOIUrl":null,"url":null,"abstract":"This paper investigates the area of window fallout behaviour of 4 mm and 6 mm thick single glazed ordinary float type glass exposed to a constant radiant heat. Regular rubber beadings and non-standard ceramic fibre beadings were used to mount the 525 mm square glass samples in commercial aluminium window frames. A total of 117 experiments were carried out where the area of glass fallout was recorded as a function of time. The average heat fluxes which the glass samples were exposed to ranged from 13 kW/m 2 to 58 kW/m 2 . The lowest heat flux that is needed for fallout occurrence is found to be 20 kW/m 2 for 4 mm thick glass and 28 kW/m 2 for 6 mm thick glass. The fallout behaviour of glass was quantified with an exponential distribution function and a probabilistic area of glass fallout prediction model for 4 mm and 6 mm thick glass is developed from the experimental results.","PeriodicalId":12145,"journal":{"name":"Fire Safety Science","volume":"78 1","pages":"444-457"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3801/iafss.fss.11-444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper investigates the area of window fallout behaviour of 4 mm and 6 mm thick single glazed ordinary float type glass exposed to a constant radiant heat. Regular rubber beadings and non-standard ceramic fibre beadings were used to mount the 525 mm square glass samples in commercial aluminium window frames. A total of 117 experiments were carried out where the area of glass fallout was recorded as a function of time. The average heat fluxes which the glass samples were exposed to ranged from 13 kW/m 2 to 58 kW/m 2 . The lowest heat flux that is needed for fallout occurrence is found to be 20 kW/m 2 for 4 mm thick glass and 28 kW/m 2 for 6 mm thick glass. The fallout behaviour of glass was quantified with an exponential distribution function and a probabilistic area of glass fallout prediction model for 4 mm and 6 mm thick glass is developed from the experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辐射热照射下单层玻璃沉降面积的概率模型
本文研究了4mm和6mm厚单层普通浮法玻璃在恒定辐射热作用下的窗口落尘行为。使用常规橡胶珠和非标准陶瓷纤维珠将525毫米方形玻璃样品安装在商用铝窗框中。总共进行了117次实验,记录了玻璃沉降物的面积作为时间的函数。玻璃样品暴露的平均热流从13 kW/ m2到58 kW/ m2不等。发现,对于4毫米厚的玻璃,发生沉降所需的最低热通量为20千瓦/立方米2,对于6毫米厚的玻璃为28千瓦/立方米2。用指数分布函数量化了玻璃的沉降行为,并根据实验结果建立了4 mm和6 mm厚玻璃沉降预测的概率区域模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling the Investigation of Structure Vulnerabilities to Wind- Driven Firebrand Showers in Wildland-Urban Interface (WUI) Fires Modeling of the pyrolysis of plywood exposed to heat fluxes under cone calorimeter Effective stress method to be used in beam finite elements to take local instabilities into account Spectral Aspects of Bench-Scale Flammability Testing: Application to Hardwood Pyrolysis Fundamental flame spread and toxicity evaluation of fire retarded polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1