Human motion modeling with deep learning: A survey

Zijie Ye, Haozhe Wu, Jia Jia
{"title":"Human motion modeling with deep learning: A survey","authors":"Zijie Ye,&nbsp;Haozhe Wu,&nbsp;Jia Jia","doi":"10.1016/j.aiopen.2021.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of human motion modeling is to understand human behaviors and create reasonable human motion like real people given different priors. With the development of deep learning, researchers tend to leverage data-driven methods to improve the performance of traditional motion modeling methods. In this paper, we present a comprehensive survey of recent human motion modeling researches. We discuss three categories of human motion modeling researches: human motion prediction, humanoid motion control and cross-modal motion synthesis and provide a detailed review over existing methods. Finally, we further discuss the remaining challenges in human motion modeling.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 35-39"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651021000309/pdfft?md5=ad9a69283a477c5f5d6b127141e48a38&pid=1-s2.0-S2666651021000309-main.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651021000309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The aim of human motion modeling is to understand human behaviors and create reasonable human motion like real people given different priors. With the development of deep learning, researchers tend to leverage data-driven methods to improve the performance of traditional motion modeling methods. In this paper, we present a comprehensive survey of recent human motion modeling researches. We discuss three categories of human motion modeling researches: human motion prediction, humanoid motion control and cross-modal motion synthesis and provide a detailed review over existing methods. Finally, we further discuss the remaining challenges in human motion modeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的人体运动建模:综述
人体运动建模的目的是理解人类的行为,并像真实的人一样在不同的先验条件下创造出合理的人体运动。随着深度学习的发展,研究人员倾向于利用数据驱动的方法来提高传统运动建模方法的性能。本文对近年来人体运动建模的研究进行了综述。讨论了人体运动预测、类人运动控制和跨模态运动综合三大类人体运动建模研究,并对现有方法进行了详细综述。最后,我们进一步讨论了人体运动建模中存在的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1