{"title":"Increasing the Performance of Portable Ion Mobility Analyzers: Development of the Periodic Focusing Differential Mobility Analyzer (PFDMA).","authors":"K. Gillig, Chung-Hsuan Chen","doi":"10.5702/massspectrometry.S0032","DOIUrl":null,"url":null,"abstract":"Ion mobility spectrometry (IMS) as a stand-alone technique has become increasingly important for applications in security, defense, and environmental monitoring, and also in biological applications such as molecular structure and -omic analysis when combined with mass spectrometry. Yet, the majority of these devices are drift cell based and limited by low duty cycles because of ion gating. Differential Mobility Analyzers (DMAs) are attractive alternatives due to their continuous ion transmission and success in analyzing aerosol particles in real time environmental tests. But, the resolution of a DMA is low due to difficulties in achieving laminar gas flow, low sample gas flow to sheath gas flow ratio, and high velocity sheath gas using small pumps, if portability is a concern. To overcome these challenges, we will introduce a new ion mobility spectrometer that increases the amount of work done on the ions during separation by introducing an electric field opposing the gas flow direction while simultaneously preserving laminar gas flow. The development of the Periodic Focusing Differential Mobility Analyzer (PFDMA) can lead to a portable device that exhibits both high resolution and sensitivity, to meet the needs of today's expanding applications.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"7 1","pages":"S0032"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.S0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 6
Abstract
Ion mobility spectrometry (IMS) as a stand-alone technique has become increasingly important for applications in security, defense, and environmental monitoring, and also in biological applications such as molecular structure and -omic analysis when combined with mass spectrometry. Yet, the majority of these devices are drift cell based and limited by low duty cycles because of ion gating. Differential Mobility Analyzers (DMAs) are attractive alternatives due to their continuous ion transmission and success in analyzing aerosol particles in real time environmental tests. But, the resolution of a DMA is low due to difficulties in achieving laminar gas flow, low sample gas flow to sheath gas flow ratio, and high velocity sheath gas using small pumps, if portability is a concern. To overcome these challenges, we will introduce a new ion mobility spectrometer that increases the amount of work done on the ions during separation by introducing an electric field opposing the gas flow direction while simultaneously preserving laminar gas flow. The development of the Periodic Focusing Differential Mobility Analyzer (PFDMA) can lead to a portable device that exhibits both high resolution and sensitivity, to meet the needs of today's expanding applications.