Existence of minimizers for a quasilinear elliptic system of gradient type

Federica Mennuni, A. Salvatore
{"title":"Existence of minimizers for a quasilinear elliptic system of gradient type","authors":"Federica Mennuni, A. Salvatore","doi":"10.3934/dcdss.2022013","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The aim of this paper is to investigate the existence of weak solutions for the coupled quasilinear elliptic system of gradient type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\left\\{ \\begin{array}{ll} - {\\rm div} (a(x, u, \\nabla u)) + A_t (x, u,\\nabla u) = g_1(x, u, v) &{\\rm{ in}} \\; \\Omega ,\\\\ - {\\rm div} (B(x, v, \\nabla v)) + B_t (x, v,\\nabla v) = g_2(x, u, v) &{\\rm{ in}}\\; \\Omega ,\\\\ \\quad u = v = 0 &{\\rm{ on}}\\;\\partial\\Omega , \\end{array} \\right. $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega \\subset \\mathbb R^N $\\end{document}</tex-math></inline-formula> is an open bounded domain, <inline-formula><tex-math id=\"M2\">\\begin{document}$ N \\geq 2 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M3\">\\begin{document}$ A(x,t,\\xi) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ B(x,t, {\\xi}) $\\end{document}</tex-math></inline-formula> are <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathcal{C}^1 $\\end{document}</tex-math></inline-formula>–Carathéodory functions on <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\Omega \\times \\mathbb R \\times { \\mathbb R}^{N} $\\end{document}</tex-math></inline-formula> with partial derivatives <inline-formula><tex-math id=\"M7\">\\begin{document}$ A_t = \\frac{\\partial A}{\\partial t} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">\\begin{document}$ a = {\\nabla}_{\\xi}A $\\end{document}</tex-math></inline-formula>, respectively <inline-formula><tex-math id=\"M9\">\\begin{document}$ B_t = \\frac{\\partial B}{\\partial t} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M10\">\\begin{document}$ b = {\\nabla}_{{\\xi}}B $\\end{document}</tex-math></inline-formula>, while <inline-formula><tex-math id=\"M11\">\\begin{document}$ g_1(x,t,s) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M12\">\\begin{document}$ g_2(x,t,s) $\\end{document}</tex-math></inline-formula> are given Carathéodory maps defined on <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\Omega \\times \\mathbb R\\times \\mathbb R $\\end{document}</tex-math></inline-formula> which are partial derivatives with respect to <inline-formula><tex-math id=\"M14\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M15\">\\begin{document}$ s $\\end{document}</tex-math></inline-formula> of a function <inline-formula><tex-math id=\"M16\">\\begin{document}$ G(x,t,s) $\\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We prove that, even if the general form of the terms <inline-formula><tex-math id=\"M17\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M18\">\\begin{document}$ B $\\end{document}</tex-math></inline-formula> makes the variational approach more difficult, under suitable hypotheses, the functional related to the problem is bounded from below and attains its minimum in a \"right\" Banach space <inline-formula><tex-math id=\"M19\">\\begin{document}$ X $\\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>The proof, which exploits the interaction between two different norms, is based on a weak version of the Cerami–Palais–Smale condition and a suitable generalization of the Weierstrass Theorem.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2022013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to investigate the existence of weak solutions for the coupled quasilinear elliptic system of gradient type

where \begin{document}$ \Omega \subset \mathbb R^N $\end{document} is an open bounded domain, \begin{document}$ N \geq 2 $\end{document} and \begin{document}$ A(x,t,\xi) $\end{document}, \begin{document}$ B(x,t, {\xi}) $\end{document} are \begin{document}$ \mathcal{C}^1 $\end{document}–Carathéodory functions on \begin{document}$ \Omega \times \mathbb R \times { \mathbb R}^{N} $\end{document} with partial derivatives \begin{document}$ A_t = \frac{\partial A}{\partial t} $\end{document}, \begin{document}$ a = {\nabla}_{\xi}A $\end{document}, respectively \begin{document}$ B_t = \frac{\partial B}{\partial t} $\end{document}, \begin{document}$ b = {\nabla}_{{\xi}}B $\end{document}, while \begin{document}$ g_1(x,t,s) $\end{document}, \begin{document}$ g_2(x,t,s) $\end{document} are given Carathéodory maps defined on \begin{document}$ \Omega \times \mathbb R\times \mathbb R $\end{document} which are partial derivatives with respect to \begin{document}$ t $\end{document} and \begin{document}$ s $\end{document} of a function \begin{document}$ G(x,t,s) $\end{document}.

We prove that, even if the general form of the terms \begin{document}$ A $\end{document} and \begin{document}$ B $\end{document} makes the variational approach more difficult, under suitable hypotheses, the functional related to the problem is bounded from below and attains its minimum in a "right" Banach space \begin{document}$ X $\end{document}.

The proof, which exploits the interaction between two different norms, is based on a weak version of the Cerami–Palais–Smale condition and a suitable generalization of the Weierstrass Theorem.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类梯度型拟线性椭圆系统极小值的存在性
The aim of this paper is to investigate the existence of weak solutions for the coupled quasilinear elliptic system of gradient type \begin{document}$ \left\{ \begin{array}{ll} - {\rm div} (a(x, u, \nabla u)) + A_t (x, u,\nabla u) = g_1(x, u, v) &{\rm{ in}} \; \Omega ,\\ - {\rm div} (B(x, v, \nabla v)) + B_t (x, v,\nabla v) = g_2(x, u, v) &{\rm{ in}}\; \Omega ,\\ \quad u = v = 0 &{\rm{ on}}\;\partial\Omega , \end{array} \right. $\end{document} where \begin{document}$ \Omega \subset \mathbb R^N $\end{document} is an open bounded domain, \begin{document}$ N \geq 2 $\end{document} and \begin{document}$ A(x,t,\xi) $\end{document}, \begin{document}$ B(x,t, {\xi}) $\end{document} are \begin{document}$ \mathcal{C}^1 $\end{document}–Carathéodory functions on \begin{document}$ \Omega \times \mathbb R \times { \mathbb R}^{N} $\end{document} with partial derivatives \begin{document}$ A_t = \frac{\partial A}{\partial t} $\end{document}, \begin{document}$ a = {\nabla}_{\xi}A $\end{document}, respectively \begin{document}$ B_t = \frac{\partial B}{\partial t} $\end{document}, \begin{document}$ b = {\nabla}_{{\xi}}B $\end{document}, while \begin{document}$ g_1(x,t,s) $\end{document}, \begin{document}$ g_2(x,t,s) $\end{document} are given Carathéodory maps defined on \begin{document}$ \Omega \times \mathbb R\times \mathbb R $\end{document} which are partial derivatives with respect to \begin{document}$ t $\end{document} and \begin{document}$ s $\end{document} of a function \begin{document}$ G(x,t,s) $\end{document}.We prove that, even if the general form of the terms \begin{document}$ A $\end{document} and \begin{document}$ B $\end{document} makes the variational approach more difficult, under suitable hypotheses, the functional related to the problem is bounded from below and attains its minimum in a "right" Banach space \begin{document}$ X $\end{document}.The proof, which exploits the interaction between two different norms, is based on a weak version of the Cerami–Palais–Smale condition and a suitable generalization of the Weierstrass Theorem.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On some model problem for the propagation of interacting species in a special environment On the Cahn-Hilliard-Darcy system with mass source and strongly separating potential Stochastic local volatility models and the Wei-Norman factorization method Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1