Control of an island Micro-hydropower Plant with Self-excited AVR and combined ballast load frequency regulator

G. Castillo, L. Ortega, Marcelo Pozo, Xavier Domínguez
{"title":"Control of an island Micro-hydropower Plant with Self-excited AVR and combined ballast load frequency regulator","authors":"G. Castillo, L. Ortega, Marcelo Pozo, Xavier Domínguez","doi":"10.1109/ETCM.2016.7750868","DOIUrl":null,"url":null,"abstract":"This project describes the design and construction of an Automatic Voltage Regulator (AVR) and an Electronic Load Controller (ELC) for the voltage and the frequency regulation in an island Micro-hydropower Plant (MHP). For the frequency control, the speed regulation by ballast load method has been used. To this approach, a combined binary-continuous load regulation was employed. The implemented AVR is totally self-excited by means of an energy transfer system which allows an isolated operation of the MHP. The entire system has been designed considering the current standard regulations of the Ecuadorian Agency of Electricity Control and Regulation (ARCONEL). The frequency and the voltage regulation were properly achieved through the implementation of digital PI controllers tuned based on mathematic models obtained from experimental data of frequency and voltage. The control of the system was validated by both, software simulations and field tests performed.","PeriodicalId":6480,"journal":{"name":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","volume":"87 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2016.7750868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This project describes the design and construction of an Automatic Voltage Regulator (AVR) and an Electronic Load Controller (ELC) for the voltage and the frequency regulation in an island Micro-hydropower Plant (MHP). For the frequency control, the speed regulation by ballast load method has been used. To this approach, a combined binary-continuous load regulation was employed. The implemented AVR is totally self-excited by means of an energy transfer system which allows an isolated operation of the MHP. The entire system has been designed considering the current standard regulations of the Ecuadorian Agency of Electricity Control and Regulation (ARCONEL). The frequency and the voltage regulation were properly achieved through the implementation of digital PI controllers tuned based on mathematic models obtained from experimental data of frequency and voltage. The control of the system was validated by both, software simulations and field tests performed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自激AVR联合压载调频控制海岛微型水电厂
本项目描述了一个用于岛屿微型水力发电厂电压和频率调节的自动电压调节器(AVR)和电子负载控制器(ELC)的设计和建造。在变频调速方面,采用了压载调速的方法。针对这种方法,采用了二元连续负荷组合调节。实现的AVR是完全自激的,通过一个能量传递系统,允许MHP的隔离操作。整个系统的设计考虑了厄瓜多尔电力控制和监管局(ARCONEL)的现行标准法规。通过对频率和电压实验数据的数学模型进行调整,实现了数字PI控制器的频率和电压调节。通过软件仿真和现场测试,验证了系统的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a smart glove as a communication tool for people with hearing impairment and speech disorders Algorithm and rapid intervention to attenuate Zika virus outbreak in large cities EMR system synchronization Trajectory tracking for quadcopter's formation with two control strategies Performance evaluation of radar systems in noise jamming environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1