High-Frequency Trading on Decentralized On-Chain Exchanges

Liyi Zhou, Kaihua Qin, C. F. Torres, D. Le, Arthur Gervais
{"title":"High-Frequency Trading on Decentralized On-Chain Exchanges","authors":"Liyi Zhou, Kaihua Qin, C. F. Torres, D. Le, Arthur Gervais","doi":"10.1109/SP40001.2021.00027","DOIUrl":null,"url":null,"abstract":"Decentralized exchanges (DEXs) allow parties to participate in financial markets while retaining full custody of their funds. However, the transparency of blockchain-based DEX in combination with the latency for transactions to be processed, makes market-manipulation feasible. For instance, adversaries could perform front-running — the practice of exploiting (typically non-public) information that may change the price of an asset for financial gain.In this work we formalize, analytically exposit and empirically evaluate an augmented variant of front-running: sandwich attacks, which involve front- and back-running victim transactions on a blockchain-based DEX. We quantify the probability of an adversarial trader being able to undertake the attack, based on the relative positioning of a transaction within a blockchain block. We find that a single adversarial trader can earn a daily revenue of over several thousand USD when performing sandwich attacks on one particular DEX — Uniswap, an exchange with over 5M USD daily trading volume by June 2020. In addition to a single-adversary game, we simulate the outcome of sandwich attacks under multiple competing adversaries, to account for the real-world trading environment.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"117 1","pages":"428-445"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 124

Abstract

Decentralized exchanges (DEXs) allow parties to participate in financial markets while retaining full custody of their funds. However, the transparency of blockchain-based DEX in combination with the latency for transactions to be processed, makes market-manipulation feasible. For instance, adversaries could perform front-running — the practice of exploiting (typically non-public) information that may change the price of an asset for financial gain.In this work we formalize, analytically exposit and empirically evaluate an augmented variant of front-running: sandwich attacks, which involve front- and back-running victim transactions on a blockchain-based DEX. We quantify the probability of an adversarial trader being able to undertake the attack, based on the relative positioning of a transaction within a blockchain block. We find that a single adversarial trader can earn a daily revenue of over several thousand USD when performing sandwich attacks on one particular DEX — Uniswap, an exchange with over 5M USD daily trading volume by June 2020. In addition to a single-adversary game, we simulate the outcome of sandwich attacks under multiple competing adversaries, to account for the real-world trading environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
去中心化链上交易所的高频交易
去中心化交易所(DEXs)允许各方参与金融市场,同时保留其资金的完全托管。然而,基于区块链的DEX的透明度,加上交易处理的延迟,使得市场操纵成为可能。例如,对手可能会抢先一步——利用(通常是非公开的)信息来改变资产价格以获取经济利益。在这项工作中,我们形式化,分析性地阐述和经验地评估了一种增强的前端运行变体:三明治攻击,它涉及基于区块链的DEX上的前端和后端受害者交易。我们根据区块链块中交易的相对定位,量化了对抗性交易者能够进行攻击的概率。我们发现,一个对抗性交易者在对一个特定的DEX - Uniswap进行三明治攻击时,每天可以获得超过数千美元的收入,该交易所到2020年6月的日交易量超过500万美元。除了单对手游戏之外,我们还模拟了多个竞争对手的三明治攻击结果,以解释现实世界的交易环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A2L: Anonymous Atomic Locks for Scalability in Payment Channel Hubs High-Assurance Cryptography in the Spectre Era An I/O Separation Model for Formal Verification of Kernel Implementations Trust, But Verify: A Longitudinal Analysis Of Android OEM Compliance and Customization HackEd: A Pedagogical Analysis of Online Vulnerability Discovery Exercises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1