Numerical and physical modeling of soft soil slope stabilized with stone columns

E. Naderi, A. Asakereh, M. Dehghani
{"title":"Numerical and physical modeling of soft soil slope stabilized with stone columns","authors":"E. Naderi, A. Asakereh, M. Dehghani","doi":"10.22075/JRCE.2020.19431.1367","DOIUrl":null,"url":null,"abstract":"There can be many reasons for engineers to place the footings near a slope such as leakage of suitable sites or architectural considerations. One of the approaches to increase the amount of bearing capacity, especially in soft soils, is adding stone columns to the soil. In this research, the behavior of a strip footing placed near a stone column reinforced clayey slope was investigated. For this purpose, some small-scale model tests were performed on a clayey slope reinforced with stone columns. The effects of the length of the stone column and the length of encasement on the footing were studied. Additionally, vertical encased stone columns in a group arrangement were investigated. Some numerical analyses were also performed using the Midas GTS NX finite element software, and the factor of safety was studied. Results show that the optimum length was equal to four times the diameter of stone columns. It was observed that by increasing the length of encasement, the bearing capacity of strip footing was also increased. The safety factor of slope showed an increase when stone columns were added to the slope, but the maximum influence on the factor of safety appeared when the stone column was in the upper middle of the slope.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2020.19431.1367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

There can be many reasons for engineers to place the footings near a slope such as leakage of suitable sites or architectural considerations. One of the approaches to increase the amount of bearing capacity, especially in soft soils, is adding stone columns to the soil. In this research, the behavior of a strip footing placed near a stone column reinforced clayey slope was investigated. For this purpose, some small-scale model tests were performed on a clayey slope reinforced with stone columns. The effects of the length of the stone column and the length of encasement on the footing were studied. Additionally, vertical encased stone columns in a group arrangement were investigated. Some numerical analyses were also performed using the Midas GTS NX finite element software, and the factor of safety was studied. Results show that the optimum length was equal to four times the diameter of stone columns. It was observed that by increasing the length of encasement, the bearing capacity of strip footing was also increased. The safety factor of slope showed an increase when stone columns were added to the slope, but the maximum influence on the factor of safety appeared when the stone column was in the upper middle of the slope.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石柱稳定软土边坡的数值与物理模拟
工程师将地基放置在斜坡附近的原因有很多,例如合适地点的渗漏或建筑方面的考虑。增加土体承载力的方法之一是在土体中增加石柱,特别是在软土中。本文研究了位于石柱加筋粘土边坡附近的条形基础的受力特性。为此,在石柱加固粘土边坡上进行了小尺度模型试验。研究了石柱长度和箱体长度对基础的影响。此外,垂直包裹的石柱在一组布置进行了调查。采用Midas GTS NX有限元软件进行了数值分析,并对安全系数进行了研究。结果表明,最佳长度为石柱直径的4倍。结果表明,增大围封长度,条形基础的承载力也有所提高。在边坡中加入石柱时,边坡的安全系数有所增加,但对安全系数影响最大的是石柱位于边坡中上方的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Damage Sensitive-Stories of RC and Steel Frames under Critical Mainshock-Aftershock Ground Motions Evaluation of Intermediate Reinforced Concrete Moment Frame subjected to Truck collision Damage Detection in Prestressed Concrete Slabs Using Wavelet Analysis of Vibration Responses in the Time Domain Rehabilitation of Corroded Reinforced Concrete Elements by Rebar Replacement Risk assessment and challenges faced in repairs and rehabilitation of dilapidated buildings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1