Machine Learning for Clustering Regencies-Cities Based on Inflation and Poverty Rates in Indonesia

R. Gustriansyah, Juhaini Alie, A. Sanmorino, R. Heriansyah, Megat Norulazmi Megat Mohamed Noor
{"title":"Machine Learning for Clustering Regencies-Cities Based on Inflation and Poverty Rates in Indonesia","authors":"R. Gustriansyah, Juhaini Alie, A. Sanmorino, R. Heriansyah, Megat Norulazmi Megat Mohamed Noor","doi":"10.24002/ijis.v5i1.5682","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has increased inflation and poverty rates in many cities, thus requiring considerable attention from the government as a policymaker. Therefore, this study aims to cluster regencies/cities that need mitigation priorities from the Indonesian government based on inflation and poverty rates in 2021. Four machine learning methods, namely k-Means (KM), Partitioning around medoids (PAM), Ward, and Divisive analysis (Diana) are utilized and compared to achieve that purpose. Clustering 90 regencies/cities in Indonesia produced five optimal clusters. Furthermore, the clustering results were validated using the Silhouette width (SW) and Dunn index (DI). The results showed that the k-means method produced the most compact cluster. Hence, this study's results can be utilized as a reference for the government in determining the steps and priorities of economic policy in Indonesia.","PeriodicalId":34118,"journal":{"name":"Indonesian Journal of Information Systems","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/ijis.v5i1.5682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic has increased inflation and poverty rates in many cities, thus requiring considerable attention from the government as a policymaker. Therefore, this study aims to cluster regencies/cities that need mitigation priorities from the Indonesian government based on inflation and poverty rates in 2021. Four machine learning methods, namely k-Means (KM), Partitioning around medoids (PAM), Ward, and Divisive analysis (Diana) are utilized and compared to achieve that purpose. Clustering 90 regencies/cities in Indonesia produced five optimal clusters. Furthermore, the clustering results were validated using the Silhouette width (SW) and Dunn index (DI). The results showed that the k-means method produced the most compact cluster. Hence, this study's results can be utilized as a reference for the government in determining the steps and priorities of economic policy in Indonesia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于印度尼西亚通货膨胀率和贫困率的城市聚类机器学习
新冠肺炎疫情加剧了许多城市的通货膨胀率和贫困率,因此需要作为政策制定者的政府给予高度关注。因此,本研究旨在根据2021年的通货膨胀率和贫困率,对需要印尼政府优先缓解的县市/城市进行集群。四种机器学习方法,即k-Means (KM), Partitioning around medidoids (PAM), Ward和divide analysis (Diana)被利用和比较来实现这一目的。印度尼西亚的90个县/城市产生了5个最佳集群。此外,利用廓形宽度(SW)和邓恩指数(DI)对聚类结果进行了验证。结果表明,k-means方法产生的聚类最紧凑。因此,本研究的结果可以作为印尼政府确定经济政策的步骤和优先事项的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊最新文献
The Implementation of Business Process Blockchain Technology Based of MSCWR SmartBox Model Priority Scheduling Implementation for Exam Schedule SPAM (Smart Patient Monitoring System) using Structural Similarity Index Measurement An Investigation of Nurses' Perceptions of the Usefulness and Easiness of Using Electronic Medical Records in Saudi Arabia: A Technology Acceptance Model Mobile Application for Medicinal Plants Recognition from Leaf Image Using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1