Ivett Ackermann, J. Shawulu, M. Keller, O. I. Fatola, M. Groschup, A. Balkema-Buschmann
{"title":"Exploring PMCA as a potential in-vitro alternative method to mouse bioassays for the highly sensitive detection of BSE prions","authors":"Ivett Ackermann, J. Shawulu, M. Keller, O. I. Fatola, M. Groschup, A. Balkema-Buschmann","doi":"10.2376/0005-9366-18021","DOIUrl":null,"url":null,"abstract":"Classical bovine spongiform encephalopathy (C-BSE) belongs to the transmissible spongiform encephalopathies (TSE), which are also designated prion diseases since they are caused by the conversion of the host-encoded cellular prion protein PrPC to its pathological isoform PrPTSE. BSE carries a zoonotic potential as BSE prions cause variant Creutzfeldt-Jakob disease in humans. To date, C-BSE infectivity can only be detected by bioassay, e.g. highly sensitive bovine PrP transgenic mice (e.g. Tgbov XV mice). Recently, highly sensitive in-vitro prion seeding activity assays, such as the Protein Misfolding Cyclic Amplification (PMCA), have been developed, which work particularly well for the template-assisted prion conversion of scrapie prions, while a similarly efficient bovine C-BSE-prion amplification remained unavailable. In the here described study, we have therefore compared the analytical sensitivities of the transgenic Tgbov XV mouse bioassay and our C-BSE PMCA protocol by analysing serial dilutions of a BSE-positive bovine brainstem homogenate pool. As both methods were shown to possess comparable sensitivities, we propose the C-BSE PMCA as a potential in-vitro replacement method, allowing the reduction and refinement of mouse bioassays for the detection of cattle derived classical BSE prions by reducing them to only specific analytical applications.","PeriodicalId":8761,"journal":{"name":"Berliner und Munchener tierarztliche Wochenschrift","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berliner und Munchener tierarztliche Wochenschrift","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2376/0005-9366-18021","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Classical bovine spongiform encephalopathy (C-BSE) belongs to the transmissible spongiform encephalopathies (TSE), which are also designated prion diseases since they are caused by the conversion of the host-encoded cellular prion protein PrPC to its pathological isoform PrPTSE. BSE carries a zoonotic potential as BSE prions cause variant Creutzfeldt-Jakob disease in humans. To date, C-BSE infectivity can only be detected by bioassay, e.g. highly sensitive bovine PrP transgenic mice (e.g. Tgbov XV mice). Recently, highly sensitive in-vitro prion seeding activity assays, such as the Protein Misfolding Cyclic Amplification (PMCA), have been developed, which work particularly well for the template-assisted prion conversion of scrapie prions, while a similarly efficient bovine C-BSE-prion amplification remained unavailable. In the here described study, we have therefore compared the analytical sensitivities of the transgenic Tgbov XV mouse bioassay and our C-BSE PMCA protocol by analysing serial dilutions of a BSE-positive bovine brainstem homogenate pool. As both methods were shown to possess comparable sensitivities, we propose the C-BSE PMCA as a potential in-vitro replacement method, allowing the reduction and refinement of mouse bioassays for the detection of cattle derived classical BSE prions by reducing them to only specific analytical applications.
期刊介绍:
The Berliner und Münchener Tierärztliche Wochenschrift is an open access, peer-reviewed journal that publishes contributions on all aspects of veterinary public health and its related subjects, such as epidemiology, bacteriology, virology, pathology, immunology, parasitology, and mycology. The journal publishes original research papers, review articles, case studies and short communications on farm animals, companion animals, equines, wild animals and laboratory animals. In addition, the editors regularly commission special issues on topics of major importance. The journal’s articles are published either in German or English and always include an abstract in the other language.