Application of independent-left-and-right-wheel-driving force controller to torque vectoring differential with two-input-two-output motor drive system for electrified vehicles
{"title":"Application of independent-left-and-right-wheel-driving force controller to torque vectoring differential with two-input-two-output motor drive system for electrified vehicles","authors":"Hiroyuki Fuse, Hiroshi Fujimoto, Kaoru Sawase, Naoki Takahashi, Ryota Takahashi, Yutaro Okamura, Ryosuke Koga","doi":"10.1002/eej.23400","DOIUrl":null,"url":null,"abstract":"<p>A torque-difference-amplification torque vectoring differential (TDA-TVD), which is composed of a two-input-two-output system, has a great potential for cornering maneuverability; however, the overall controllability of slip ratio or driving force control is difficult owing to its complex mechanical structure. In order to enhance the controllability of TDA-TVD, this study proposes a design method to apply a driving force controller (DFC) with a decent slip ratio and driving force controllability, which was originally intended for independent wheel drive systems. An experimental verification on a slippery road using a real vehicle with the TDA-TVD indicated that the DFC can be applied to the TDA-TVD and that it improves the overall performance of the traction control.</p>","PeriodicalId":50550,"journal":{"name":"Electrical Engineering in Japan","volume":"215 4","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eej.23400","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A torque-difference-amplification torque vectoring differential (TDA-TVD), which is composed of a two-input-two-output system, has a great potential for cornering maneuverability; however, the overall controllability of slip ratio or driving force control is difficult owing to its complex mechanical structure. In order to enhance the controllability of TDA-TVD, this study proposes a design method to apply a driving force controller (DFC) with a decent slip ratio and driving force controllability, which was originally intended for independent wheel drive systems. An experimental verification on a slippery road using a real vehicle with the TDA-TVD indicated that the DFC can be applied to the TDA-TVD and that it improves the overall performance of the traction control.
期刊介绍:
Electrical Engineering in Japan (EEJ) is an official journal of the Institute of Electrical Engineers of Japan (IEEJ). This authoritative journal is a translation of the Transactions of the Institute of Electrical Engineers of Japan. It publishes 16 issues a year on original research findings in Electrical Engineering with special focus on the science, technology and applications of electric power, such as power generation, transmission and conversion, electric railways (including magnetic levitation devices), motors, switching, power economics.