An Optical Neural Network Architecture based on Highly Parallelized WDM-Multiplier-Accumulator

T. Ishihara, Jun Shiomi, Naoki Hattori, Yutaka Masuda, A. Shinya, M. Notomi
{"title":"An Optical Neural Network Architecture based on Highly Parallelized WDM-Multiplier-Accumulator","authors":"T. Ishihara, Jun Shiomi, Naoki Hattori, Yutaka Masuda, A. Shinya, M. Notomi","doi":"10.1109/PHOTONICS49561.2019.00008","DOIUrl":null,"url":null,"abstract":"Future applications such as anomaly detection in a network and autonomous driving require extremely low, submicrosecond latency processing in pattern classification. Towards the realization of such an ultra-fast inference processing, this paper proposes an optical neural network architecture which can classify anomaly patterns at sub-nanosecond latency. The architecture fully exploits optical parallelism of lights using wavelength division multiplexing (WDM) in vector-matrix multiplication. It also exploits a linear optics with passive nanophotonic devices such as microring resonators, optical combiners, and passive couplers, which make it possible to construct low power and ultra-low latency optical neural networks. Optoelectronic circuit simulation using optical circuit implementation of multi-layer perceptron (MLP) demonstrates sub-nanosecond processing of optical neural network.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":"73 1","pages":"15-21"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/PHOTONICS49561.2019.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Future applications such as anomaly detection in a network and autonomous driving require extremely low, submicrosecond latency processing in pattern classification. Towards the realization of such an ultra-fast inference processing, this paper proposes an optical neural network architecture which can classify anomaly patterns at sub-nanosecond latency. The architecture fully exploits optical parallelism of lights using wavelength division multiplexing (WDM) in vector-matrix multiplication. It also exploits a linear optics with passive nanophotonic devices such as microring resonators, optical combiners, and passive couplers, which make it possible to construct low power and ultra-low latency optical neural networks. Optoelectronic circuit simulation using optical circuit implementation of multi-layer perceptron (MLP) demonstrates sub-nanosecond processing of optical neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于高度并行wdm -乘加器的光神经网络结构
未来的应用,如网络异常检测和自动驾驶,在模式分类中需要极低的、亚微秒级的延迟处理。为了实现这种超快速的推理处理,本文提出了一种可以在亚纳秒延迟下对异常模式进行分类的光神经网络架构。该架构充分利用光的平行性,在矢量矩阵乘法中使用波分复用(WDM)。它还利用线性光学与无源纳米光子器件,如微环谐振器、光合并器和无源耦合器,这使得构建低功耗和超低延迟的光神经网络成为可能。利用光学电路实现多层感知器(MLP)的光电电路仿真证明了光学神经网络的亚纳秒处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
431
期刊最新文献
Analysis and Prediction of Effect of Turning Marks Diffraction on Image Quality of Optical System Numerical Simulation of External-Cavity Distributed Feedback Semiconductor Laser The Influence of Energy Transfer on the Color Temperature Change in Color-Tunable Organic Light Emitting Diodes with Interface Exciplex A High Spectral Efficient Frequency-Domain Channel-Estimation Method for the Polarization-Division-Multiplexed CO-OFDM-OQAM System The Study on the Relationship between Dynamic Balance Energy Distribution and Spectral Stability with Voltage Change in White Organic Light Emitting Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1