{"title":"Non-Local Neural Networks With Grouped Bilinear Attentional Transforms","authors":"Lu Chi, Zehuan Yuan, Yadong Mu, Changhu Wang","doi":"10.1109/cvpr42600.2020.01182","DOIUrl":null,"url":null,"abstract":"Modeling spatial or temporal long-range dependency plays a key role in deep neural networks. Conventional dominant solutions include recurrent operations on sequential data or deeply stacking convolutional layers with small kernel size. Recently, a number of non-local operators (such as self-attention based) have been devised. They are typically generic and can be plugged into many existing network pipelines for globally computing among any two neurons in a feature map. This work proposes a novel non-local operator. It is inspired by the attention mechanism of human visual system, which can quickly attend to important local parts in sight and suppress other less-relevant information. The core of our method is learnable and data-adaptive bilinear attentional transform (BA-Transform), whose merits are three-folds: first, BA-Transform is versatile to model a wide spectrum of local or global attentional operations, such as emphasizing specific local regions. Each BA-Transform is learned in a data-adaptive way; Secondly, to address the discrepancy among features, we further design grouped BA-Transforms, which essentially apply different attentional operations to different groups of feature channels; Thirdly, many existing non-local operators are computation-intensive. The proposed BA-Transform is implemented by simple matrix multiplication and admits better efficacy. For empirical evaluation, we perform comprehensive experiments on two large-scale benchmarks, ImageNet and Kinetics, for image / video classification respectively. The achieved accuracies and various ablation experiments consistently demonstrate significant improvement by large margins.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"48 1","pages":"11801-11810"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.01182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Modeling spatial or temporal long-range dependency plays a key role in deep neural networks. Conventional dominant solutions include recurrent operations on sequential data or deeply stacking convolutional layers with small kernel size. Recently, a number of non-local operators (such as self-attention based) have been devised. They are typically generic and can be plugged into many existing network pipelines for globally computing among any two neurons in a feature map. This work proposes a novel non-local operator. It is inspired by the attention mechanism of human visual system, which can quickly attend to important local parts in sight and suppress other less-relevant information. The core of our method is learnable and data-adaptive bilinear attentional transform (BA-Transform), whose merits are three-folds: first, BA-Transform is versatile to model a wide spectrum of local or global attentional operations, such as emphasizing specific local regions. Each BA-Transform is learned in a data-adaptive way; Secondly, to address the discrepancy among features, we further design grouped BA-Transforms, which essentially apply different attentional operations to different groups of feature channels; Thirdly, many existing non-local operators are computation-intensive. The proposed BA-Transform is implemented by simple matrix multiplication and admits better efficacy. For empirical evaluation, we perform comprehensive experiments on two large-scale benchmarks, ImageNet and Kinetics, for image / video classification respectively. The achieved accuracies and various ablation experiments consistently demonstrate significant improvement by large margins.