{"title":"Weibull modelling of particle cracking in metal matrix composites","authors":"C.A. Lewis, P.J. Withers","doi":"10.1016/0956-7151(95)90152-3","DOIUrl":null,"url":null,"abstract":"<div><p>An investigation into the occurrence of reinforcement cracking within a particulate ZrO<sub>2</sub>/2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modelled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behaviour of the particles was provided by <em>in situ</em> neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis.</p><p>Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters so deduced are very sensitive to the approximations and the assumptions made in constructing the model.</p></div>","PeriodicalId":100018,"journal":{"name":"Acta Metallurgica et Materialia","volume":"43 10","pages":"Pages 3685-3699"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-7151(95)90152-3","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica et Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0956715195901523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89
Abstract
An investigation into the occurrence of reinforcement cracking within a particulate ZrO2/2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modelled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behaviour of the particles was provided by in situ neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis.
Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters so deduced are very sensitive to the approximations and the assumptions made in constructing the model.