{"title":"Dynamics of flow in a branching channel","authors":"V. Uruba, P. Procházka, V. Skála","doi":"10.1051/MECA/2021014","DOIUrl":null,"url":null,"abstract":"Flow in a branched channel is studied experimentally using the PIV technique. The presented study is concentrated on clarifying the dynamical behaviour in individual branches. The 11 branches issuing from the main channel perpendicularly, all channels are of rectangular cross-section. First, the time-mean flow-field is shown, then the flow dynamics is investigated using the OPD method. Flow patterns and frequencies are evaluated in three selected branches. The separated flow in branches exhibits highly dynamical behaviour, which differs substantially in the branches close to the inflow, in the main channel middle and close to its end. The typical topologies and frequencies of the detected quasi-periodical structures in the channel braches are shown in the study. Mostly, the flow-fields are populated by trains of vortices with alternating orientation and saddle-like structures. The flow-field close to the channel walls affects heat transfer process between the wall and fluid.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"37 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/MECA/2021014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flow in a branched channel is studied experimentally using the PIV technique. The presented study is concentrated on clarifying the dynamical behaviour in individual branches. The 11 branches issuing from the main channel perpendicularly, all channels are of rectangular cross-section. First, the time-mean flow-field is shown, then the flow dynamics is investigated using the OPD method. Flow patterns and frequencies are evaluated in three selected branches. The separated flow in branches exhibits highly dynamical behaviour, which differs substantially in the branches close to the inflow, in the main channel middle and close to its end. The typical topologies and frequencies of the detected quasi-periodical structures in the channel braches are shown in the study. Mostly, the flow-fields are populated by trains of vortices with alternating orientation and saddle-like structures. The flow-field close to the channel walls affects heat transfer process between the wall and fluid.
期刊介绍:
An International Journal on Mechanical Sciences and Engineering Applications
With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities.
Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.