{"title":"Approximation of average cost Markov decision processes using empirical distributions and concentration inequalities","authors":"F. Dufour, T. Prieto-Rumeau","doi":"10.1080/17442508.2014.939979","DOIUrl":null,"url":null,"abstract":"We consider a discrete-time Markov decision process with Borel state and action spaces, and possibly unbounded cost function. We assume that the Markov transition kernel is absolutely continuous with respect to some probability measure . By replacing this probability measure with its empirical distribution for a sample of size n, we obtain a finite state space control problem, which is used to provide an approximation of the optimal value and an optimal policy of the original control model. We impose Lipschitz continuity properties on the control model and its associated density functions. We measure the accuracy of the approximation of the optimal value and an optimal policy by means of a non-asymptotic concentration inequality based on the 1-Wasserstein distance between and . Obtaining numerically the solution of the approximating control model is discussed and an application to an inventory management problem is presented.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"58 1","pages":"273 - 307"},"PeriodicalIF":0.8000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.939979","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 29
Abstract
We consider a discrete-time Markov decision process with Borel state and action spaces, and possibly unbounded cost function. We assume that the Markov transition kernel is absolutely continuous with respect to some probability measure . By replacing this probability measure with its empirical distribution for a sample of size n, we obtain a finite state space control problem, which is used to provide an approximation of the optimal value and an optimal policy of the original control model. We impose Lipschitz continuity properties on the control model and its associated density functions. We measure the accuracy of the approximation of the optimal value and an optimal policy by means of a non-asymptotic concentration inequality based on the 1-Wasserstein distance between and . Obtaining numerically the solution of the approximating control model is discussed and an application to an inventory management problem is presented.
期刊介绍:
Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects.
Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly.
In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.