Modeling Kansei Index for Images and Impression Estimation Using Fine Tuning

Yukiya Taki, K. Kato, Kazunori Terada, Kensuke Tobitani
{"title":"Modeling Kansei Index for Images and Impression Estimation Using Fine Tuning","authors":"Yukiya Taki, K. Kato, Kazunori Terada, Kensuke Tobitani","doi":"10.1145/3512730.3533717","DOIUrl":null,"url":null,"abstract":"In this study, we propose an effective method for estimating image impressions that is based on a Kansei (affective) index and then show how a deep learning model can be used to evaluate the suitability of images based on that Kansei index. To accomplish this, we exhaustively collected words and phrases that express image impressions using the evaluation grid method and then conducted an evaluation experiment for those collected words using Yahoo! Cloud Sourcing. Next, factor analysis was performed on the collected evaluation data, and the obtained factor scores were used as the Kansei index. Finally, we used ResNet18 trained with ImageNet to fine-tune each image's factor scores for use as supervised data and confirmed that our deep learning model could infer an effective Kansei index that correlates strongly with the target images.","PeriodicalId":43265,"journal":{"name":"International Journal of Mobile Computing and Multimedia Communications","volume":"94 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Computing and Multimedia Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512730.3533717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we propose an effective method for estimating image impressions that is based on a Kansei (affective) index and then show how a deep learning model can be used to evaluate the suitability of images based on that Kansei index. To accomplish this, we exhaustively collected words and phrases that express image impressions using the evaluation grid method and then conducted an evaluation experiment for those collected words using Yahoo! Cloud Sourcing. Next, factor analysis was performed on the collected evaluation data, and the obtained factor scores were used as the Kansei index. Finally, we used ResNet18 trained with ImageNet to fine-tune each image's factor scores for use as supervised data and confirmed that our deep learning model could infer an effective Kansei index that correlates strongly with the target images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为图像建模感性指数和使用微调的印象估计
在这项研究中,我们提出了一种基于感性指数估计图像印象的有效方法,然后展示了如何使用深度学习模型来评估基于感性指数的图像适用性。为了做到这一点,我们使用评价网格方法详尽地收集表达图像印象的单词和短语,然后使用Yahoo!云采购。然后,对收集到的评价数据进行因子分析,将得到的因子得分作为感性指数。最后,我们使用经过ImageNet训练的ResNet18对每个图像的因子得分进行微调,以用作监督数据,并确认我们的深度学习模型可以推断出与目标图像强烈相关的有效感性指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
23
期刊最新文献
Biometric Authentication Methods on Mobile Platforms Reverse Chronology: The Nature of News Stories——Based on the Investigation of the Typical Reports of the Model of the Times Design of Accounting Information System Based on Computer Network Challenges and Solutions for Network Security in Data Centers Driven by Information Technology Using Eye Tracking to Measure Overall Usability of Online Grocery Shopping Websites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1