Tight Normal Cone Merging for Efficient Collision Detection of Thin Deformable Objects

Dong-Hoon Han, Changyoon Lee, Sangbin Lee, Hyeongseok Ko
{"title":"Tight Normal Cone Merging for Efficient Collision Detection of Thin Deformable Objects","authors":"Dong-Hoon Han, Changyoon Lee, Sangbin Lee, Hyeongseok Ko","doi":"10.2312/EGS.20211021","DOIUrl":null,"url":null,"abstract":"When simulating thin deformable objects such as clothes, collision detection alone takes a lot of computation. One way of reducing the computation is culling false-positives as much as possible. In the context of bounding volume hierarchy, Provot proposed a culling method that is based on hierarchical merging of normal enclosing cones. In this work, we investigate Provot’s merging algorithm and show that there is some room for improvement. We propose a new merging algorithm, in the context of discrete collision detection, which always produces an equal or tighter mergence than Provot’s merging. We extend the above algorithm so that it can be used in the context of continuous collision detection. Experiments show that the proposed method makes about 25% reduction in the number of triangle pairs for which vertex-triangle or edge-edge collision test has to be performed, and 18% reduction in time for collision detection. CCS Concepts • Computing methodologies → Collision detection;","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"19 1","pages":"49-52"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGS.20211021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When simulating thin deformable objects such as clothes, collision detection alone takes a lot of computation. One way of reducing the computation is culling false-positives as much as possible. In the context of bounding volume hierarchy, Provot proposed a culling method that is based on hierarchical merging of normal enclosing cones. In this work, we investigate Provot’s merging algorithm and show that there is some room for improvement. We propose a new merging algorithm, in the context of discrete collision detection, which always produces an equal or tighter mergence than Provot’s merging. We extend the above algorithm so that it can be used in the context of continuous collision detection. Experiments show that the proposed method makes about 25% reduction in the number of triangle pairs for which vertex-triangle or edge-edge collision test has to be performed, and 18% reduction in time for collision detection. CCS Concepts • Computing methodologies → Collision detection;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于紧法向锥合并的薄变形物体有效碰撞检测
当模拟薄的可变形物体(如衣服)时,仅碰撞检测就需要大量的计算。减少计算的一种方法是尽可能地剔除误报。在边界体分层的背景下,Provot提出了一种基于法向包围锥体分层合并的剔除方法。在这项工作中,我们研究了Provot的合并算法,并表明它有一些改进的空间。在离散碰撞检测的背景下,我们提出了一种新的合并算法,它总是产生与Provot合并相等或更严格的合并。我们扩展了上述算法,使其可以用于连续碰撞检测。实验表明,该方法可将需要进行顶点-三角形或边缘-三角形碰撞测试的三角形对数量减少约25%,碰撞检测时间减少18%。•计算方法→碰撞检测;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AvatarGo: Plug and Play self-avatars for VR Reconstructing 3D Face of Infants in Social Interactions Using Morphable Models of Non-Infants. Dyani White Hawk: Speaking to Relatives, Kemper Museum of Contemporary Art, Kansas City, MO, 18 February–16 May 2021 Andy Warhol, Tate Modern, London, 12 March–15 November 2020 Investigating Fluidity in Hans Haacke’s Condensation Cube (1965) and Gustave Metzger’s Liquid Crystal Environment (1965)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1