Use of PSA for design of emergency mitigation systems in a hydrogen production plant using General Atomics SI cycle technology. Section II: Sulphuric acid decomposition
{"title":"Use of PSA for design of emergency mitigation systems in a hydrogen production plant using General Atomics SI cycle technology. Section II: Sulphuric acid decomposition","authors":"A. Mendoza, Pamela F. Nelson, J. François","doi":"10.1787/9789264087156-45-EN","DOIUrl":null,"url":null,"abstract":"Throughout the past decades, the need to reduce greenhouse gas emissions has prompted the development of technologies for the production of clean fuels through the use of zero emissions primary energy resources, such as heat from high temperature nuclear reactors. One of the most promising of these technologies is the generation of hydrogen by the sulphur-iodine cycle coupled to a high temperature nuclear reactor, initially proposed by General Atomics. By its nature and because these will have to be large-scale plants, development of these technologies from its current phase to its procurement and construction phase, will have to incorporate emergency mitigation systems in all its sections and nuclear-chemical \"tie-in points\" to prevent unwanted events that can compromise the integrity of the plant and the nearby population centres.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"64 1","pages":"397-406"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear science abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1787/9789264087156-45-EN","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Throughout the past decades, the need to reduce greenhouse gas emissions has prompted the development of technologies for the production of clean fuels through the use of zero emissions primary energy resources, such as heat from high temperature nuclear reactors. One of the most promising of these technologies is the generation of hydrogen by the sulphur-iodine cycle coupled to a high temperature nuclear reactor, initially proposed by General Atomics. By its nature and because these will have to be large-scale plants, development of these technologies from its current phase to its procurement and construction phase, will have to incorporate emergency mitigation systems in all its sections and nuclear-chemical "tie-in points" to prevent unwanted events that can compromise the integrity of the plant and the nearby population centres.