{"title":"Compatibilization in Two-Component Injection Molding by Means of SplitReactions with Varying Reactive Sites – a Monte-Carlo Simulation","authors":"A. John, J. Nagel, G. Heinrich","doi":"10.2174/1874343901105010001","DOIUrl":null,"url":null,"abstract":"Adhesion of immiscible polymers during two-component injection molding may be improved by transreactions of properly functionalized molecules in situ using the thermal energy of the melts. These reactions must provide a suffi- cient conversion of reactive monomers during the short cooling time down to the glass temperature and within the small spatial region of the interface width to create as much as possible interconnecting chemical links between the components on the molecular level. To investigate these processes, we performed Monte-Carlo (MC) simulations based on the three dimensional coarse-grained Bond Fluctuation Model (BFM) in a two-phase system. We studied split type reactions exhib- iting reactive monomers at different sites (End, Middle, Random) of the polymers governed by activation energies of EA = 0, 1, 3, 5 and 7 T k B. For the reacting systems several physical properties like consumption, radius of gyration, concentra- tion profiles or the distribution of the degree of polymerization were calculated as a function of time. Additionally, differ- ent functions for the description of adhesion on the molecular level were adopted and calculated depending on reaction type, activation energy and degree of consumption. From the results those chemical reaction types were deduced, which should be most suitable for the compatibilization in two-component injection molding.","PeriodicalId":22718,"journal":{"name":"The Open Macromolecules Journal","volume":"83 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Macromolecules Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874343901105010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Adhesion of immiscible polymers during two-component injection molding may be improved by transreactions of properly functionalized molecules in situ using the thermal energy of the melts. These reactions must provide a suffi- cient conversion of reactive monomers during the short cooling time down to the glass temperature and within the small spatial region of the interface width to create as much as possible interconnecting chemical links between the components on the molecular level. To investigate these processes, we performed Monte-Carlo (MC) simulations based on the three dimensional coarse-grained Bond Fluctuation Model (BFM) in a two-phase system. We studied split type reactions exhib- iting reactive monomers at different sites (End, Middle, Random) of the polymers governed by activation energies of EA = 0, 1, 3, 5 and 7 T k B. For the reacting systems several physical properties like consumption, radius of gyration, concentra- tion profiles or the distribution of the degree of polymerization were calculated as a function of time. Additionally, differ- ent functions for the description of adhesion on the molecular level were adopted and calculated depending on reaction type, activation energy and degree of consumption. From the results those chemical reaction types were deduced, which should be most suitable for the compatibilization in two-component injection molding.