Intelligent control technology of engineering electrical automation for PID algorithm

Pub Date : 2023-08-28 DOI:10.3233/idt-230125
Meng Niu
{"title":"Intelligent control technology of engineering electrical automation for PID algorithm","authors":"Meng Niu","doi":"10.3233/idt-230125","DOIUrl":null,"url":null,"abstract":"Electrical device automation in smart industries assimilates machines, electronic circuits, and control systems for efficient operations. The automated controls provide human intervention and fewer operations through proportional-integral-derivative (PID) controllers. Considering these devices’ operational and control loop contributions, this article introduces an Override-Controlled Definitive Performance Scheme (OCDPS). This scheme focuses on confining machine operations within the allocated time intervals preventing loop failures. The control value for multiple electrical machines is estimated based on the operational load and time for preventing failures. The override cases use predictive learning that incorporates the previous operational logs. Considering the override prediction, the control value is adjusted independently for different devices for confining variation loops. The automation features are programmed as before and after loop failures to cease further operational overrides in this process. Predictive learning independently identifies the possibilities in override and machine failures for increasing efficacy. The proposed method is contrasted with previously established models including the ILC, ASLP, and TD3. This evaluation considers the parameters of uptime, errors, override time, productivity, and prediction accuracy. Loops in operations and typical running times are two examples of the variables. The learning process results are utilized to estimate efficiency by modifying the operating time and loop consistencies with the help of control values. To avoid unscheduled downtime, the discovered loop failures modify the control parameters of individual machine processes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/idt-230125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical device automation in smart industries assimilates machines, electronic circuits, and control systems for efficient operations. The automated controls provide human intervention and fewer operations through proportional-integral-derivative (PID) controllers. Considering these devices’ operational and control loop contributions, this article introduces an Override-Controlled Definitive Performance Scheme (OCDPS). This scheme focuses on confining machine operations within the allocated time intervals preventing loop failures. The control value for multiple electrical machines is estimated based on the operational load and time for preventing failures. The override cases use predictive learning that incorporates the previous operational logs. Considering the override prediction, the control value is adjusted independently for different devices for confining variation loops. The automation features are programmed as before and after loop failures to cease further operational overrides in this process. Predictive learning independently identifies the possibilities in override and machine failures for increasing efficacy. The proposed method is contrasted with previously established models including the ILC, ASLP, and TD3. This evaluation considers the parameters of uptime, errors, override time, productivity, and prediction accuracy. Loops in operations and typical running times are two examples of the variables. The learning process results are utilized to estimate efficiency by modifying the operating time and loop consistencies with the help of control values. To avoid unscheduled downtime, the discovered loop failures modify the control parameters of individual machine processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于PID算法的工程电气自动化智能控制技术
智能工业中的电气设备自动化包括机器、电子电路和控制系统,以实现高效运行。自动化控制通过比例-积分-导数(PID)控制器提供人为干预和更少的操作。考虑到这些设备的操作和控制回路的贡献,本文介绍了一个覆盖控制的最终性能方案(OCDPS)。该方案侧重于在分配的时间间隔内限制机器操作,防止环路故障。多台电机的控制值是根据运行负荷和防止故障的时间来估计的。覆盖用例使用结合了先前操作日志的预测学习。考虑到超驰预测,对不同装置的控制值进行了独立调整,形成了围变回路。自动化功能在循环失败之前和之后进行编程,以停止该过程中的进一步操作覆盖。预测性学习可以独立地识别覆盖和机器故障的可能性,以提高效率。该方法与先前建立的模型(包括ILC、ASLP和TD3)进行了对比。该评估考虑了正常运行时间、错误、覆盖时间、生产力和预测准确性等参数。操作中的循环和典型的运行时间是变量的两个例子。利用学习过程的结果,利用控制值修改操作时间和回路一致性来估计效率。为了避免计划外的停机时间,发现的回路故障修改了单个机器过程的控制参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1