{"title":"Effect of Frequency Content of Seismic Excitation on Slosh Response of Liquid Tank with Baffle Plate","authors":"P. Nimisha, B. Jayalekshmi, K. Venkataramana","doi":"10.1142/s179343112350001x","DOIUrl":null,"url":null,"abstract":"The violent dynamic behavior of liquid under horizontal excitation is a key factor that needs to be addressed in the seismic-resistant design of liquid tanks. Therefore, this study focuses on the slosh response of the liquid medium in a rectangular tank under Imperial Valley 1979, El Centro 1940 and Kobe 1995 ground motions of different frequency ranges. The ground motions records are selected based on the PGA/PGV ratio. For slosh control, a single vertical perforated baffle plate is used as an anti-slosh element with different configurations of perforations. Considering the free surface elevation as the major response parameter, the effect of percentage of perforation of the baffle plate, clear spacing of perforations and offset distance of the perforated plate are investigated by carrying out the pressure-based transient analysis using computational fluid dynamic (CFD). The optimum perforation varies from 10% to 17%, corresponding to the frequency of ground motion in the range of far-resonant to near-resonant conditions. Additionally, “rapid zone” ([Formula: see text]-zone) and “moderate zone” ([Formula: see text]-zone) are identified to pilot the positioning of the perforated baffle plate in liquid tanks. The perforated baffle plate with an optimum range of moderately spaced perforations positioned at the moderate zone of the tank effectively reduces the free surface elevation. Furthermore, the perforated baffle plate is more advantageous during violent sloshing under near-resonant conditions.","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earthquake and Tsunami","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1142/s179343112350001x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
The violent dynamic behavior of liquid under horizontal excitation is a key factor that needs to be addressed in the seismic-resistant design of liquid tanks. Therefore, this study focuses on the slosh response of the liquid medium in a rectangular tank under Imperial Valley 1979, El Centro 1940 and Kobe 1995 ground motions of different frequency ranges. The ground motions records are selected based on the PGA/PGV ratio. For slosh control, a single vertical perforated baffle plate is used as an anti-slosh element with different configurations of perforations. Considering the free surface elevation as the major response parameter, the effect of percentage of perforation of the baffle plate, clear spacing of perforations and offset distance of the perforated plate are investigated by carrying out the pressure-based transient analysis using computational fluid dynamic (CFD). The optimum perforation varies from 10% to 17%, corresponding to the frequency of ground motion in the range of far-resonant to near-resonant conditions. Additionally, “rapid zone” ([Formula: see text]-zone) and “moderate zone” ([Formula: see text]-zone) are identified to pilot the positioning of the perforated baffle plate in liquid tanks. The perforated baffle plate with an optimum range of moderately spaced perforations positioned at the moderate zone of the tank effectively reduces the free surface elevation. Furthermore, the perforated baffle plate is more advantageous during violent sloshing under near-resonant conditions.
液体在水平激励下的剧烈动力行为是储液罐抗震设计中需要考虑的关键因素。因此,本文重点研究了Imperial Valley 1979、El Centro 1940和Kobe 1995三种不同频率范围的地震动作用下矩形槽内液体介质的晃动响应。根据PGA/PGV比值选择地面运动记录。为了控制晃动,使用单个垂直穿孔挡板作为具有不同穿孔配置的防晃动元件。以自由面高程为主要响应参数,采用计算流体力学(CFD)方法,研究了挡流板穿孔百分数、穿孔间隙和穿孔板偏移距离对挡流板变形的影响。最佳射孔率范围为10% ~ 17%,对应于远共振到近共振条件下的地震动频率。此外,还确定了“快速区”([公式:见文]-区域)和“中等区”([公式:见文]-区域),以指导液罐中穿孔挡板的定位。在水箱的中等区域,穿孔挡板的最佳间距适中,有效地降低了自由表面标高。此外,在近共振条件下,穿孔挡板在剧烈晃动中更有利。
期刊介绍:
Journal of Earthquake and Tsunami provides a common forum for scientists and engineers working in the areas of earthquakes and tsunamis to communicate and interact with one another and thereby enhance the opportunities for such cross-fertilization of ideas. The Journal publishes original papers pertaining to state-of-the-art research and development in Geological and Seismological Setting; Ground Motion, Site and Building Response; Tsunami Generation, Propagation, Damage and Mitigation, as well as Education and Risk Management following an earthquake or a tsunami.
We welcome papers in the following categories:
Geological and Seismological Aspects
Tectonics: (Geology - earth processes)
Fault processes and earthquake generation: seismology (earthquake processes)
Earthquake wave propagation: geophysics
Remote sensing
Earthquake Engineering
Geotechnical hazards and response
Effects on buildings and structures
Risk analysis and management
Retrofitting and remediation
Education and awareness
Material Behaviour
Soil
Reinforced concrete
Steel
Tsunamis
Tsunamigenic sources
Tsunami propagation: Physical oceanography
Run-up and damage: wave hydraulics.