{"title":"Control of contact forces: The role of tactile feedback for contact localization","authors":"A. Prete, F. Nori, G. Metta, L. Natale","doi":"10.1109/IROS.2012.6385803","DOIUrl":null,"url":null,"abstract":"This paper investigates the role of precise estimation of contact points in force control. This analysis is motivated by scenarios in which robots make contacts, either voluntarily or accidentally, with different parts of their body. Control paradigms that are usually implemented in robots with no tactile system, make the hypothesis that contacts occur at the end-effectors only. In this paper we try to investigate what happens when this assumption is not verified. First we consider a simple feedforward force control law, and then we extend it by introducing a proportional feedback term. For both controllers we find the error in the resulting contact force, that is induced by a hypothetic error in the estimation of the contact point. We show that, depending on the geometry of the contact, incorrect estimation of contact points can induce undesired joint accelerations. We validate the presented analysis with tests on a simulated robot arm. Moreover we consider a complex real world scenario, where most of the assumptions that we make in our analytical derivation do not hold. Through tests on the iCub humanoid robot we see how errors in contact localization affect the performance of a parallel force/position controller. In order to estimate contact points and contact forces on the forearm of the iCub we do not use any model of the environment, but we exploit its 6-axis force/torque sensor and its sensorized skin.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"62 1","pages":"4048-4053"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
This paper investigates the role of precise estimation of contact points in force control. This analysis is motivated by scenarios in which robots make contacts, either voluntarily or accidentally, with different parts of their body. Control paradigms that are usually implemented in robots with no tactile system, make the hypothesis that contacts occur at the end-effectors only. In this paper we try to investigate what happens when this assumption is not verified. First we consider a simple feedforward force control law, and then we extend it by introducing a proportional feedback term. For both controllers we find the error in the resulting contact force, that is induced by a hypothetic error in the estimation of the contact point. We show that, depending on the geometry of the contact, incorrect estimation of contact points can induce undesired joint accelerations. We validate the presented analysis with tests on a simulated robot arm. Moreover we consider a complex real world scenario, where most of the assumptions that we make in our analytical derivation do not hold. Through tests on the iCub humanoid robot we see how errors in contact localization affect the performance of a parallel force/position controller. In order to estimate contact points and contact forces on the forearm of the iCub we do not use any model of the environment, but we exploit its 6-axis force/torque sensor and its sensorized skin.