Identification of Charge Transfer Pathways in Metal-Organic Framework-Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution

IF 13.5 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-01-01 DOI:10.3866/PKU.WHXB202304018
Kezhen Lai , Fengyan Li , Ning Li , Yangqin Gao , Lei Ge
{"title":"Identification of Charge Transfer Pathways in Metal-Organic Framework-Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution","authors":"Kezhen Lai ,&nbsp;Fengyan Li ,&nbsp;Ning Li ,&nbsp;Yangqin Gao ,&nbsp;Lei Ge","doi":"10.3866/PKU.WHXB202304018","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is an important zero-pollution green energy source with potential for alleviating environmental contamination and energy shortages. Hydrogen evolution <em>via</em> solar-energy-induced semiconducting water splitting is among the most environmentally friendly methods available to date. In this study, a metal–organic-framework-derived, Ni-decorated carbon nanotube (Ni-CNT) is used as a non-noble co-catalyst. This Ni-CNT is grown <em>in situ</em> on ZnIn<sub>2</sub>S<sub>4</sub> nanosheets using a simple one-step oil bath strategy, wherein Ni nanoparticles are wrapped around the top and cross sections of the nanotubes, preventing their agglomeration. Notably, Ni-CNT/ZnIn<sub>2</sub>S<sub>4</sub> heterostructures feature intimate contact interfaces that promote charge transfer, facilitating their use as efficient photocatalysts for hydrogen evolution. The 38Ni-CNT/ZnIn<sub>2</sub>S<sub>4</sub> sample exhibits a high H<sub>2</sub> production rate (12267 μmolꞏh<sup>−1</sup>ꞏg<sup>−1</sup>), with an apparent quantum efficiency (AQE) of 11.3% under 420 nm monochromatic light irradiation, which is nearly 6.4 times that of pure ZnIn<sub>2</sub>S<sub>4</sub>. The results of X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) corroborate the observations on Ni-CNT/ZnIn<sub>2</sub>S<sub>4</sub> heterostructures. Electrochemical measurements reveal that the combination of the Ni-CNT and ZnIn<sub>2</sub>S<sub>4</sub> facilitates the transfer of photogenerated electrons and effectively prevents rapid recombination of photocarriers, thus improving the hydrogen evolution performance of ZnIn<sub>2</sub>S<sub>4</sub>. Electron spin resonance (ESR) results further prove that cocatalyst Ni-CNTs are beneficial for prolonging the lifetimes of ZnIn<sub>2</sub>S<sub>4</sub> photogenerated electrons, thereby achieving effective charge separation. A charge transfer pathway in the heterojunction interfaces is further explored and confirmed by density functional theory (DFT) calculations. The difference in the Fermi level energy (<em>E</em><sub>f</sub>) contributes to both charge migration and the generation of a built-in electronic field (BEF), indicating that the energy band of ZnIn<sub>2</sub>S<sub>4</sub> bends downward, which is favorable for photogenerated electron flow from ZnIn<sub>2</sub>S<sub>4</sub> to the Ni-CNT electron acceptor. The results of planar-averaged electron density difference analysis confirm that the hot electrons are transferred from Ni nanoparticles to the CNT and then to the ZnIn<sub>2</sub>S<sub>4</sub> nanosheets, indicating the formation of a photogenerated electron transfer pathway of ZnIn<sub>2</sub>S<sub>4</sub> → CNT → Ni. Furthermore, Gibbs free energy of H* adsorption (Δ<em>G</em><sub>H*</sub>) and crystal orbital Hamilton population (COHP) analysis indicate that Ni nanoparticles can serve as active sites, promoting H<sub>2</sub> evolution. Thus, the present study formulates a new strategy for developing low-cost, high-efficiency, non-noble-metal co-catalysts for photocatalytic hydrogen production.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (88KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 1","pages":"Article 2304018"},"PeriodicalIF":13.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000481","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen is an important zero-pollution green energy source with potential for alleviating environmental contamination and energy shortages. Hydrogen evolution via solar-energy-induced semiconducting water splitting is among the most environmentally friendly methods available to date. In this study, a metal–organic-framework-derived, Ni-decorated carbon nanotube (Ni-CNT) is used as a non-noble co-catalyst. This Ni-CNT is grown in situ on ZnIn2S4 nanosheets using a simple one-step oil bath strategy, wherein Ni nanoparticles are wrapped around the top and cross sections of the nanotubes, preventing their agglomeration. Notably, Ni-CNT/ZnIn2S4 heterostructures feature intimate contact interfaces that promote charge transfer, facilitating their use as efficient photocatalysts for hydrogen evolution. The 38Ni-CNT/ZnIn2S4 sample exhibits a high H2 production rate (12267 μmolꞏh−1ꞏg−1), with an apparent quantum efficiency (AQE) of 11.3% under 420 nm monochromatic light irradiation, which is nearly 6.4 times that of pure ZnIn2S4. The results of X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) corroborate the observations on Ni-CNT/ZnIn2S4 heterostructures. Electrochemical measurements reveal that the combination of the Ni-CNT and ZnIn2S4 facilitates the transfer of photogenerated electrons and effectively prevents rapid recombination of photocarriers, thus improving the hydrogen evolution performance of ZnIn2S4. Electron spin resonance (ESR) results further prove that cocatalyst Ni-CNTs are beneficial for prolonging the lifetimes of ZnIn2S4 photogenerated electrons, thereby achieving effective charge separation. A charge transfer pathway in the heterojunction interfaces is further explored and confirmed by density functional theory (DFT) calculations. The difference in the Fermi level energy (Ef) contributes to both charge migration and the generation of a built-in electronic field (BEF), indicating that the energy band of ZnIn2S4 bends downward, which is favorable for photogenerated electron flow from ZnIn2S4 to the Ni-CNT electron acceptor. The results of planar-averaged electron density difference analysis confirm that the hot electrons are transferred from Ni nanoparticles to the CNT and then to the ZnIn2S4 nanosheets, indicating the formation of a photogenerated electron transfer pathway of ZnIn2S4 → CNT → Ni. Furthermore, Gibbs free energy of H* adsorption (ΔGH*) and crystal orbital Hamilton population (COHP) analysis indicate that Ni nanoparticles can serve as active sites, promoting H2 evolution. Thus, the present study formulates a new strategy for developing low-cost, high-efficiency, non-noble-metal co-catalysts for photocatalytic hydrogen production.
  1. Download: Download high-res image (88KB)
  2. Download: Download full-size image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属-有机骨架衍生Ni-CNT/ZnIn2S4异质结光催化析氢电荷转移途径的鉴定
氢是一种重要的零污染绿色能源,具有缓解环境污染和能源短缺的潜力。通过太阳能诱导的半导体水分解析氢是迄今为止最环保的方法之一。在这项研究中,一种金属有机骨架衍生的、镍修饰的碳纳米管(Ni-CNT)被用作非贵金属共催化剂。这种镍碳纳米管采用简单的一步油浴策略在ZnIn2S4纳米片上原位生长,其中镍纳米颗粒包裹在纳米管的顶部和横截面上,防止它们团聚。值得注意的是,Ni-CNT/ZnIn2S4异质结构具有促进电荷转移的密切接触界面,有助于它们作为高效的析氢光催化剂。38Ni-CNT/ZnIn2S4样品在420 nm单色光照射下,H2产率高达12267 μmolꞏh−1ꞏg−1,表观量子效率(AQE)为11.3%,是纯ZnIn2S4的近6.4倍。x射线衍射(XRD)、透射电镜(TEM)和x射线光电子能谱(XPS)的结果证实了Ni-CNT/ZnIn2S4异质结构的观察结果。电化学测量表明,Ni-CNT与ZnIn2S4的结合促进了光生电子的转移,有效地阻止了光载流子的快速重组,从而提高了ZnIn2S4的析氢性能。电子自旋共振(ESR)结果进一步证明了助催化剂Ni-CNTs有利于延长ZnIn2S4光生电子的寿命,从而实现有效的电荷分离。通过密度泛函理论(DFT)的计算,进一步探讨了异质结界面中的电荷转移途径。费米能级能(Ef)的差异有助于电荷迁移和内嵌电子场(BEF)的产生,表明ZnIn2S4的能带向下弯曲,有利于光电子从ZnIn2S4流向Ni-CNT电子受体。平面平均电子密度差分析结果证实,热电子从Ni纳米粒子转移到CNT上,再转移到ZnIn2S4纳米片上,表明形成了ZnIn2S4→CNT→Ni的光生电子转移途径。此外,H*吸附的吉布斯自由能(ΔGH*)和晶体轨道汉密尔顿居群(COHP)分析表明,Ni纳米粒子可以作为活性位点,促进H2的演化。因此,本研究为开发用于光催化制氢的低成本、高效率、非贵金属共催化剂制定了新的策略。下载:下载高清图片(88KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Machine learning potentials for property predictions of two-dimensional group-III nitrides Recent advances and challenges of eco-friendly Ni-rich cathode slurry systems in lithium-ion batteries MOF/MOF nanosheets S-scheme heterojunction for accelerated charge kinetics and efficient photocatalytic H2 evolution 2D COF photocatalyst with highly stabilized tautomeric transition and singlet oxygen generation Charge transfer mechanism investigation of S-scheme photocatalyst using soft X-ray absorption spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1