Mixed-horizon optimal feedback control as a model of human movement

Justinas Česonis, D. W. Franklin
{"title":"Mixed-horizon optimal feedback control as a model of human movement","authors":"Justinas Česonis, D. W. Franklin","doi":"10.51628/001c.29674","DOIUrl":null,"url":null,"abstract":"Funding information Computational optimal feedback control (OFC) models in the sensorimotor control literature span a vast range of different implementations. Among the popular algorithms, finitehorizon, receding-horizon or infinite-horizon linear-quadratic regulators (LQR) have been broadly used to model human reaching movements. While these different implementations have their unique merits, all three have limitations in simulating the temporal evolution of visuomotor feedback responses. Here we propose a novel approach – a mixed-horizonOFC – by combining the strengths of the traditional finite-horizon and the infinite-horizon controllers to address their individual limitations. Specifically, we use the infinite-horizonOFC to generate durations of themovements, which are then fed into the finite-horizon controller to generate control gains. We then demonstrate the stability of our model by performing extensive sensitivity analysis of both re-optimisation and different cost functions. Finally, we use our model to provide a fresh look to previously published studies by reinforcing the previous results [1], providing alternative explanations to previous studies [2], or generating new predictive results for prior experiments [3].","PeriodicalId":74289,"journal":{"name":"Neurons, behavior, data analysis and theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurons, behavior, data analysis and theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51628/001c.29674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Funding information Computational optimal feedback control (OFC) models in the sensorimotor control literature span a vast range of different implementations. Among the popular algorithms, finitehorizon, receding-horizon or infinite-horizon linear-quadratic regulators (LQR) have been broadly used to model human reaching movements. While these different implementations have their unique merits, all three have limitations in simulating the temporal evolution of visuomotor feedback responses. Here we propose a novel approach – a mixed-horizonOFC – by combining the strengths of the traditional finite-horizon and the infinite-horizon controllers to address their individual limitations. Specifically, we use the infinite-horizonOFC to generate durations of themovements, which are then fed into the finite-horizon controller to generate control gains. We then demonstrate the stability of our model by performing extensive sensitivity analysis of both re-optimisation and different cost functions. Finally, we use our model to provide a fresh look to previously published studies by reinforcing the previous results [1], providing alternative explanations to previous studies [2], or generating new predictive results for prior experiments [3].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合视界最优反馈控制作为人体运动模型
在感觉运动控制文献中,计算最优反馈控制(OFC)模型涵盖了广泛的不同实现。在流行的算法中,有限视界、后退视界或无限视界线性二次型调节器(LQR)被广泛用于模拟人类的伸展运动。虽然这些不同的实现有其独特的优点,但在模拟视觉运动反馈反应的时间演变方面,这三种实现都有局限性。在这里,我们提出了一种新颖的方法-混合水平ofc -通过结合传统有限水平控制器和无限水平控制器的优势来解决它们各自的局限性。具体来说,我们使用无限水平ofc来生成运动的持续时间,然后将其输入到有限水平控制器中以产生控制增益。然后,我们通过对重新优化和不同成本函数进行广泛的敏感性分析来证明我们模型的稳定性。最后,我们使用我们的模型通过强化先前的结果[1],为先前的研究[2]提供替代解释,或为先前的实验[3]生成新的预测结果,为先前发表的研究提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling Spontaneous Firing Activity of the Motor Cortex in a Spiking Neural Network with Random and Local Connectivity Expressive architectures enhance interpretability of dynamics-based neural population models Probabilistic representations as building blocks for higher-level vision Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis Frontal effective connectivity increases with task demands and time on task: a Dynamic Causal Model of electrocorticogram in macaque monkeys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1