Motion2Vec: Semi-Supervised Representation Learning from Surgical Videos

A. Tanwani, P. Sermanet, Andy Yan, Raghav V. Anand, Mariano Phielipp, Ken Goldberg
{"title":"Motion2Vec: Semi-Supervised Representation Learning from Surgical Videos","authors":"A. Tanwani, P. Sermanet, Andy Yan, Raghav V. Anand, Mariano Phielipp, Ken Goldberg","doi":"10.1109/ICRA40945.2020.9197324","DOIUrl":null,"url":null,"abstract":"Learning meaningful visual representations in an embedding space can facilitate generalization in downstream tasks such as action segmentation and imitation. In this paper, we learn a motion-centric representation of surgical video demonstrations by grouping them into action segments/subgoals/options in a semi-supervised manner. We present Motion2Vec, an algorithm that learns a deep embedding feature space from video observations by minimizing a metric learning loss in a Siamese network: images from the same action segment are pulled together while pushed away from randomly sampled images of other segments, while respecting the temporal ordering of the images. The embeddings are iteratively segmented with a recurrent neural network for a given parametrization of the embedding space after pre-training the Siamese network. We only use a small set of labeled video segments to semantically align the embedding space and assign pseudo-labels to the remaining unlabeled data by inference on the learned model parameters. We demonstrate the use of this representation to imitate surgical suturing kinematic motions from publicly available videos of the JIGSAWS dataset. Results give 85.5% segmentation accuracy on average suggesting performance improvement over several state-of-the-art baselines, while kinematic pose imitation gives 0.94 centimeter error in position per observation on the test set. Videos, code and data are available at: https://sites.google.com/view/motion2vec","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"2174-2181"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Learning meaningful visual representations in an embedding space can facilitate generalization in downstream tasks such as action segmentation and imitation. In this paper, we learn a motion-centric representation of surgical video demonstrations by grouping them into action segments/subgoals/options in a semi-supervised manner. We present Motion2Vec, an algorithm that learns a deep embedding feature space from video observations by minimizing a metric learning loss in a Siamese network: images from the same action segment are pulled together while pushed away from randomly sampled images of other segments, while respecting the temporal ordering of the images. The embeddings are iteratively segmented with a recurrent neural network for a given parametrization of the embedding space after pre-training the Siamese network. We only use a small set of labeled video segments to semantically align the embedding space and assign pseudo-labels to the remaining unlabeled data by inference on the learned model parameters. We demonstrate the use of this representation to imitate surgical suturing kinematic motions from publicly available videos of the JIGSAWS dataset. Results give 85.5% segmentation accuracy on average suggesting performance improvement over several state-of-the-art baselines, while kinematic pose imitation gives 0.94 centimeter error in position per observation on the test set. Videos, code and data are available at: https://sites.google.com/view/motion2vec
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion2Vec:基于手术视频的半监督表示学习
在嵌入空间中学习有意义的视觉表示可以促进下游任务(如动作分割和模仿)的泛化。在本文中,我们以半监督的方式将外科手术视频演示分组为动作片段/子目标/选项,从而学习以运动为中心的表示。我们提出了Motion2Vec算法,该算法通过最小化Siamese网络中的度量学习损失,从视频观察中学习深度嵌入特征空间:来自相同动作片段的图像被拉到一起,同时远离其他片段的随机采样图像,同时尊重图像的时间顺序。在对Siamese网络进行预训练后,对给定的嵌入空间参数化,使用递归神经网络对嵌入进行迭代分割。我们只使用一小部分标记的视频片段对嵌入空间进行语义对齐,并通过对学习到的模型参数的推断为剩余的未标记数据分配伪标签。我们演示了使用这种表示来模仿来自JIGSAWS数据集的公开视频的手术缝合运动学运动。结果显示,在几个最先进的基线上,平均分割精度为85.5%,表明性能有所提高,而运动学姿态模仿在测试集上每次观察的位置误差为0.94厘米。视频、代码和数据可在https://sites.google.com/view/motion2vec上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1