Thais Meira Menezes*, Gustavo Seabra* and Jorge Luiz Neves*,
{"title":"Molecular Recognition Study toward the Mitochondrial Electron Transport Chain Inhibitor Mubritinib and Human Serum Albumin","authors":"Thais Meira Menezes*, Gustavo Seabra* and Jorge Luiz Neves*, ","doi":"10.1021/acs.molpharmaceut.3c00187","DOIUrl":null,"url":null,"abstract":"<p >The ability to bind plasma proteins helps in comprehending relevant aspects related to the pharmacological properties of many drugs. Despite the vital role of the drug mubritinib (MUB) in the prophylaxis of various diseases, its interaction with carrier proteins still needs to be clarified. The present work focuses on the interaction between MUB and Human serum albumin (HSA), investigated by employing multispectroscopic, biochemical, and molecular docking approaches. The results reveal that MUB has quenched HSA intrinsic fluorescence (following a static mechanism) by attaching very close (<i>r</i> = 6.76 ?) and with moderate affinity (<i>K</i><sub>b</sub> ≈ 10<sup>4</sup> M<sup>–1</sup>) to the protein site I (mainly by H-bonds, hydrophobic and Van der Waals forces). On one side, the HSA–MUB interaction has been accompanied by a slight disturbance in the HSA chemical environment (around the Trp residue) and protein secondary structure modifications. On another side, MUB competitively inhibits HSA esterase-like activity, which is very similar to other Tyrosine kinase inhibitors, and evidence that protein functional alterations have been triggered by MUB interaction. In summary, all of the presented observations can shed light on diverse pharmacological factors associated with drug administration.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"20 8","pages":"4021–4030"},"PeriodicalIF":4.5000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c00187","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
The ability to bind plasma proteins helps in comprehending relevant aspects related to the pharmacological properties of many drugs. Despite the vital role of the drug mubritinib (MUB) in the prophylaxis of various diseases, its interaction with carrier proteins still needs to be clarified. The present work focuses on the interaction between MUB and Human serum albumin (HSA), investigated by employing multispectroscopic, biochemical, and molecular docking approaches. The results reveal that MUB has quenched HSA intrinsic fluorescence (following a static mechanism) by attaching very close (r = 6.76 ?) and with moderate affinity (Kb ≈ 104 M–1) to the protein site I (mainly by H-bonds, hydrophobic and Van der Waals forces). On one side, the HSA–MUB interaction has been accompanied by a slight disturbance in the HSA chemical environment (around the Trp residue) and protein secondary structure modifications. On another side, MUB competitively inhibits HSA esterase-like activity, which is very similar to other Tyrosine kinase inhibitors, and evidence that protein functional alterations have been triggered by MUB interaction. In summary, all of the presented observations can shed light on diverse pharmacological factors associated with drug administration.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.