{"title":"The PEPPHER Composition Tool: Performance-Aware Dynamic Composition of Applications for GPU-Based Systems","authors":"Usman Dastgeer, Lu Li, C. Kessler","doi":"10.1109/SC.Companion.2012.97","DOIUrl":null,"url":null,"abstract":"The PEPPHER component model defines an environment for annotation of native C/C++ based components for homogeneous and heterogeneous multicore and manycore systems, including GPU and multi-GPU based systems. For the same computational functionality, captured as a component, different sequential and explicitly parallel implementation variants using various types of execution units might be provided, together with metadata such as explicitly exposed tunable parameters. The goal is to compose an application from its components and variants such that, depending on the run-time context, the most suitable implementation variant will be chosen automatically for each invocation. We describe and evaluate the PEPPHER composition tool, which explores the application's components and their implementation variants, generates the necessary low-level code that interacts with the runtime system, and coordinates the native compilation and linking of the various code units to compose the overall application code. With several applications, we demonstrate how the composition tool provides a high-level programming front-end while effectively utilizing the task-based PEPPHER runtime system (StarPU) underneath.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"2 1","pages":"711-720"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
The PEPPHER component model defines an environment for annotation of native C/C++ based components for homogeneous and heterogeneous multicore and manycore systems, including GPU and multi-GPU based systems. For the same computational functionality, captured as a component, different sequential and explicitly parallel implementation variants using various types of execution units might be provided, together with metadata such as explicitly exposed tunable parameters. The goal is to compose an application from its components and variants such that, depending on the run-time context, the most suitable implementation variant will be chosen automatically for each invocation. We describe and evaluate the PEPPHER composition tool, which explores the application's components and their implementation variants, generates the necessary low-level code that interacts with the runtime system, and coordinates the native compilation and linking of the various code units to compose the overall application code. With several applications, we demonstrate how the composition tool provides a high-level programming front-end while effectively utilizing the task-based PEPPHER runtime system (StarPU) underneath.