Automated Precision Tuning in Activity Classification Systems: A Case Study

Q4 Social Sciences Meta: Avaliacao Pub Date : 2020-01-21 DOI:10.1145/3381427.3381432
Nicola Fossati, Daniele Cattaneo, M. Chiari, Stefano Cherubin, G. Agosta
{"title":"Automated Precision Tuning in Activity Classification Systems: A Case Study","authors":"Nicola Fossati, Daniele Cattaneo, M. Chiari, Stefano Cherubin, G. Agosta","doi":"10.1145/3381427.3381432","DOIUrl":null,"url":null,"abstract":"The greater availability and reduction in production cost make wearable IoT platforms perfect candidates to continuously monitor people at risk, like elderly people. In particular these platforms, along with the use of artifical intelligence algorithms, can be exploited to detect and monitor people's activities, in particular potentially harmful situations, such as falling. However, wearable devices have limited computational power and battery life. We optimize a situation-recognition application via the well-known precision tuning practice using a dedicated state-of-the-art toolchain. After the optimization we evaluate how the reduced-precision version better fits the use case of limited-resources platforms, such as wearable devices. In particular, we achieve over 500% of speedup in execution time, and consume about 6 times less energy to carry out the classification.","PeriodicalId":38836,"journal":{"name":"Meta: Avaliacao","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta: Avaliacao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3381427.3381432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

The greater availability and reduction in production cost make wearable IoT platforms perfect candidates to continuously monitor people at risk, like elderly people. In particular these platforms, along with the use of artifical intelligence algorithms, can be exploited to detect and monitor people's activities, in particular potentially harmful situations, such as falling. However, wearable devices have limited computational power and battery life. We optimize a situation-recognition application via the well-known precision tuning practice using a dedicated state-of-the-art toolchain. After the optimization we evaluate how the reduced-precision version better fits the use case of limited-resources platforms, such as wearable devices. In particular, we achieve over 500% of speedup in execution time, and consume about 6 times less energy to carry out the classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活动分类系统中的自动精确调谐:一个案例研究
更高的可用性和更低的生产成本使可穿戴物联网平台成为持续监测高危人群(如老年人)的理想选择。特别是这些平台,以及人工智能算法的使用,可以用来检测和监控人们的活动,特别是潜在的有害情况,如摔倒。然而,可穿戴设备的计算能力和电池寿命有限。我们通过使用专用的最先进的工具链,通过众所周知的精确调优实践来优化情况识别应用程序。优化后,我们评估了降低精度的版本如何更好地适应资源有限的平台,如可穿戴设备。特别是,我们在执行时间上实现了500%以上的加速,并且在进行分类时消耗的能量减少了约6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meta: Avaliacao
Meta: Avaliacao Social Sciences-Education
CiteScore
0.40
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊最新文献
Camera spectral sensitivity estimation based on spectrally tunable LED illumination Metamer mismatch volume calculation method based on high-dimensional spherical sampling Machine vision-based portable track inspection system Optimization of RGB image spectral reconstruction based on radial basis function networks Study on spectral adaptive transformation based on chromatic aberration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1