Linear stereo matching

Leonardo De-Maeztu, S. Mattoccia, A. Villanueva, R. Cabeza
{"title":"Linear stereo matching","authors":"Leonardo De-Maeztu, S. Mattoccia, A. Villanueva, R. Cabeza","doi":"10.1109/ICCV.2011.6126434","DOIUrl":null,"url":null,"abstract":"Recent local stereo matching algorithms based on an adaptive-weight strategy achieve accuracy similar to global approaches. One of the major problems of these algorithms is that they are computationally expensive and this complexity increases proportionally to the window size. This paper proposes a novel cost aggregation step with complexity independent of the window size (i.e. O(1)) that outperforms state-of-the-art O(1) methods. Moreover, compared to other O(1) approaches, our method does not rely on integral histograms enabling aggregation using colour images instead of grayscale ones. Finally, to improve the results of the proposed algorithm a disparity refinement pipeline is also proposed. The overall algorithm produces results comparable to those of state-of-the-art stereo matching algorithms.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"80 1","pages":"1708-1715"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

Recent local stereo matching algorithms based on an adaptive-weight strategy achieve accuracy similar to global approaches. One of the major problems of these algorithms is that they are computationally expensive and this complexity increases proportionally to the window size. This paper proposes a novel cost aggregation step with complexity independent of the window size (i.e. O(1)) that outperforms state-of-the-art O(1) methods. Moreover, compared to other O(1) approaches, our method does not rely on integral histograms enabling aggregation using colour images instead of grayscale ones. Finally, to improve the results of the proposed algorithm a disparity refinement pipeline is also proposed. The overall algorithm produces results comparable to those of state-of-the-art stereo matching algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性立体匹配
近年来基于自适应权重策略的局部立体匹配算法达到了与全局匹配方法相似的精度。这些算法的一个主要问题是它们的计算成本很高,而且这种复杂性随着窗口大小的增加而成比例地增加。本文提出了一种新的成本聚合步骤,其复杂性与窗口大小无关(即O(1)),优于最先进的O(1)方法。此外,与其他O(1)方法相比,我们的方法不依赖于积分直方图,可以使用彩色图像而不是灰度图像进行聚合。最后,为了改进算法的结果,还提出了视差细化管道。整体算法产生的结果可与最先进的立体匹配算法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust and efficient parametric face alignment Video parsing for abnormality detection From learning models of natural image patches to whole image restoration Discriminative figure-centric models for joint action localization and recognition A general preconditioning scheme for difference measures in deformable registration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1