Optimizing anomaly detector deployment under evolutionary black-box vulnerability testing

H. G. Kayack, A. N. Zincir-Heywood, M. Heywood, S. Burschka
{"title":"Optimizing anomaly detector deployment under evolutionary black-box vulnerability testing","authors":"H. G. Kayack, A. N. Zincir-Heywood, M. Heywood, S. Burschka","doi":"10.1109/CISDA.2009.5356546","DOIUrl":null,"url":null,"abstract":"This work focuses on testing anomaly detectors from the perspective of a Multi-objective Evolutionary Exploit Generator (EEG). Such a framework provides users of anomaly detection systems two capabilities. Firstly, no knowledge of protected data structures need to be assumed (i.e. the detector is a black-box), where the time, knowledge and availability of tools to perform such an analysis might not be generally available. Secondly, the evolved exploits are then able to demonstrate weaknesses in the ensuing detector parameterization. Therefore, the system administrator can identify the suitable parameters for the effective operation of the detector. EEG is employed against two second generation anomaly detectors, namely pH and pH with schema mask, on four UNIX applications in order to perform a vulnerability assessment and make a comparison between the two detectors.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"85 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work focuses on testing anomaly detectors from the perspective of a Multi-objective Evolutionary Exploit Generator (EEG). Such a framework provides users of anomaly detection systems two capabilities. Firstly, no knowledge of protected data structures need to be assumed (i.e. the detector is a black-box), where the time, knowledge and availability of tools to perform such an analysis might not be generally available. Secondly, the evolved exploits are then able to demonstrate weaknesses in the ensuing detector parameterization. Therefore, the system administrator can identify the suitable parameters for the effective operation of the detector. EEG is employed against two second generation anomaly detectors, namely pH and pH with schema mask, on four UNIX applications in order to perform a vulnerability assessment and make a comparison between the two detectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化演化黑盒漏洞测试下的异常检测器部署
本文主要从多目标进化漏洞生成器(EEG)的角度对异常检测器进行测试。这种框架为异常检测系统的用户提供了两种功能。首先,不需要假定对受保护的数据结构有任何了解(即检测器是一个黑盒),因为执行这种分析的时间、知识和工具的可用性通常是不具备的。其次,进化的漏洞能够证明随后的检测器参数化中的弱点。因此,系统管理员可以确定合适的参数,使探测器有效运行。利用EEG对四个UNIX应用程序上的两种第二代异常检测器pH和带模式掩码的pH进行漏洞评估,并对两种检测器进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1