Automated Dysarthria Severity Classification Using Deep Learning Frameworks

Amlu Anna Joshy, R. Rajan
{"title":"Automated Dysarthria Severity Classification Using Deep Learning Frameworks","authors":"Amlu Anna Joshy, R. Rajan","doi":"10.23919/Eusipco47968.2020.9287741","DOIUrl":null,"url":null,"abstract":"Dysarthria is a neuro-motor speech disorder that renders speech unintelligible, in proportional to its severity. Assessing the severity level of dysarthria, apart from being a diagnostic step to evaluate the patient's improvement, is also capable of aiding automatic dysarthric speech recognition systems. In this paper, a detailed study on dysarthia severity classification using various deep learning architectural choices, namely deep neural network (DNN), convolutional neural network (CNN) and long short-term memory network (LSTM) is carried out. Mel frequency cepstral coefficients (MFCCs) and its derivatives are used as features. Performance of these models are compared with a baseline support vector machine (SVM) classifier using the UA-Speech corpus and the TORGO database. The highest classification accuracy of 96.18% and 93.24% are reported for TORGO and UA-Speech respectively. Detailed analysis on performance of these models shows that a proper choice of a deep learning architecture can ensure better performance than the conventionally used SVM classifier.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"116-120"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Dysarthria is a neuro-motor speech disorder that renders speech unintelligible, in proportional to its severity. Assessing the severity level of dysarthria, apart from being a diagnostic step to evaluate the patient's improvement, is also capable of aiding automatic dysarthric speech recognition systems. In this paper, a detailed study on dysarthia severity classification using various deep learning architectural choices, namely deep neural network (DNN), convolutional neural network (CNN) and long short-term memory network (LSTM) is carried out. Mel frequency cepstral coefficients (MFCCs) and its derivatives are used as features. Performance of these models are compared with a baseline support vector machine (SVM) classifier using the UA-Speech corpus and the TORGO database. The highest classification accuracy of 96.18% and 93.24% are reported for TORGO and UA-Speech respectively. Detailed analysis on performance of these models shows that a proper choice of a deep learning architecture can ensure better performance than the conventionally used SVM classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习框架的构音障碍严重程度自动分类
构音障碍是一种神经运动语言障碍,其严重程度与其言语无法理解成正比。评估构音障碍的严重程度,除了作为评估患者改善的诊断步骤外,还能够帮助自动构音障碍语音识别系统。本文采用深度学习的多种架构选择,即深度神经网络(deep neural network, DNN)、卷积神经网络(convolutional neural network, CNN)和长短期记忆网络(long - short-term memory network, LSTM),对dysarthia的严重程度分类进行了详细研究。用Mel频率倒谱系数及其导数作为特征。将这些模型的性能与使用UA-Speech语料库和TORGO数据库的基线支持向量机(SVM)分类器进行比较。TORGO和UA-Speech的分类准确率最高,分别为96.18%和93.24%。对这些模型性能的详细分析表明,适当选择深度学习架构可以确保比传统使用的SVM分类器更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1