Deep Reinforcement Learning for Intelligent Reflecting Surface-assisted D2D Communications

K. Nguyen, Antonino Masaracchia, Cheng Yin, L. Nguyen, O. Dobre, T. Duong
{"title":"Deep Reinforcement Learning for Intelligent Reflecting Surface-assisted D2D Communications","authors":"K. Nguyen, Antonino Masaracchia, Cheng Yin, L. Nguyen, O. Dobre, T. Duong","doi":"10.4108/eetinis.v10i1.2864","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the network’s sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":"PP 1","pages":"e1"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetinis.v10i1.2864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the network’s sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能反射表面辅助D2D通信的深度强化学习
在本文中,我们提出了一种深度强化学习(DRL)方法来解决由智能反射面(IRS)支持的设备对设备(D2D)通信中网络求和速率的优化问题。部署IRS是为了减轻D2D发射器和相关D2D接收器之间的干扰并增强信号。我们的目标是共同优化D2D发射机的发射功率和IRS的相移矩阵,以最大限度地提高网络和速率。我们建立了一个马尔可夫决策过程,并在此基础上提出了求解最大化博弈的近端策略优化。仿真结果表明,该方法在可实现速率和处理时间方面具有令人印象深刻的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
15
审稿时长
10 weeks
期刊最新文献
ViMedNER: A Medical Named Entity Recognition Dataset for Vietnamese Distributed Spatially Non-Stationary Channel Estimation for Extremely-Large Antenna Systems On the Performance of the Relay Selection in Multi-hop Cluster-based Wireless Networks with Multiple Eavesdroppers Under Equally Correlated Rayleigh Fading Improving Performance of the Typical User in the Indoor Cooperative NOMA Millimeter Wave Networks with Presence of Walls Real-time Single-Channel EOG removal based on Empirical Mode Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1