Crystal Structure Behavior of Vanadium-Titanium Magnetite (VTM) Ore by Planetary Ball Mill

Yosep Han, Seongmin Kim, Minuk Jung, Hoseok Jeon
{"title":"Crystal Structure Behavior of Vanadium-Titanium Magnetite (VTM) Ore by Planetary Ball Mill","authors":"Yosep Han, Seongmin Kim, Minuk Jung, Hoseok Jeon","doi":"10.7844/kirr.2022.31.2.63","DOIUrl":null,"url":null,"abstract":"In this study, mechanical grinding using a planetary ball mill was performed under various conditions to evaluate its effect on the crystal structure of vanadium titanium magnetite (VTM) ore from the Kwain Mine in South Korea. The crystal structure of the activated product was also evaluated. Magnetite and ilmenite were identified as the main types of VTM ore used in the Kwain Mine, and the main types of gangue minerals were iron-based silicate minerals. According to the mechanical activation results, the crystallinity and crystal size decreased as the size of the grinding media (balls) decreased, and the amorphization of the sample/ball filling was significant as the amount of the sample was reduced. In addition, as the grinding speed and time increased, the crystal structure significantly changed, proving that these two parameters had a greater effect on the crystal structure than the ball size and sample/ball filling ratio.","PeriodicalId":20967,"journal":{"name":"Resources Recycling","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7844/kirr.2022.31.2.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, mechanical grinding using a planetary ball mill was performed under various conditions to evaluate its effect on the crystal structure of vanadium titanium magnetite (VTM) ore from the Kwain Mine in South Korea. The crystal structure of the activated product was also evaluated. Magnetite and ilmenite were identified as the main types of VTM ore used in the Kwain Mine, and the main types of gangue minerals were iron-based silicate minerals. According to the mechanical activation results, the crystallinity and crystal size decreased as the size of the grinding media (balls) decreased, and the amorphization of the sample/ball filling was significant as the amount of the sample was reduced. In addition, as the grinding speed and time increased, the crystal structure significantly changed, proving that these two parameters had a greater effect on the crystal structure than the ball size and sample/ball filling ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行星球磨机对钒钛磁铁矿(VTM)矿石晶体结构行为的研究
采用行星球磨机对韩国kain矿钒钛磁铁矿(VTM)进行了不同条件下的机械磨矿,考察了机械磨矿对VTM矿石晶体结构的影响。并对活化产物的晶体结构进行了评价。确定了Kwain矿VTM矿石的主要类型为磁铁矿和钛铁矿,脉石矿物主要类型为铁基硅酸盐矿物。机械活化结果表明,随着研磨介质(球)粒度的减小,结晶度和晶粒尺寸减小;随着试样用量的减少,试样/球的非晶化现象明显。此外,随着磨矿速度和磨矿时间的增加,晶体结构发生了明显的变化,证明这两个参数对晶体结构的影响大于球粒度和样品/球填充比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the Basic Property Evaluation of Eco-powder, a Hydrothermal Synthesis Product for Improving Waste Vinyl Recycling Efficiency Separation of Ag and Zn from Nitrate Leachate of Spent Silver Oxide Batteries by Solvent Extraction with Cyanex272 Feasibility Study of Methanesulfonic Acid (MSA), an Alternative Lixiviant to Improve Conventional Sulfuric Acid Leaching of NCM Black Mass Manufacturing of Lime Materials with High Specific Surface Area for Desulfurization Waste LED Recycling: Status and Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1