HSA-RNN: Hierarchical Structure-Adaptive RNN for Video Summarization

Bin Zhao, Xuelong Li, Xiaoqiang Lu
{"title":"HSA-RNN: Hierarchical Structure-Adaptive RNN for Video Summarization","authors":"Bin Zhao, Xuelong Li, Xiaoqiang Lu","doi":"10.1109/CVPR.2018.00773","DOIUrl":null,"url":null,"abstract":"Although video summarization has achieved great success in recent years, few approaches have realized the influence of video structure on the summarization results. As we know, the video data follow a hierarchical structure, i.e., a video is composed of shots, and a shot is composed of several frames. Generally, shots provide the activity-level information for people to understand the video content. While few existing summarization approaches pay attention to the shot segmentation procedure. They generate shots by some trivial strategies, such as fixed length segmentation, which may destroy the underlying hierarchical structure of video data and further reduce the quality of generated summaries. To address this problem, we propose a structure-adaptive video summarization approach that integrates shot segmentation and video summarization into a Hierarchical Structure-Adaptive RNN, denoted as HSA-RNN. We evaluate the proposed approach on four popular datasets, i.e., SumMe, TVsum, CoSum and VTW. The experimental results have demonstrated the effectiveness of HSA-RNN in the video summarization task.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"11 1","pages":"7405-7414"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155

Abstract

Although video summarization has achieved great success in recent years, few approaches have realized the influence of video structure on the summarization results. As we know, the video data follow a hierarchical structure, i.e., a video is composed of shots, and a shot is composed of several frames. Generally, shots provide the activity-level information for people to understand the video content. While few existing summarization approaches pay attention to the shot segmentation procedure. They generate shots by some trivial strategies, such as fixed length segmentation, which may destroy the underlying hierarchical structure of video data and further reduce the quality of generated summaries. To address this problem, we propose a structure-adaptive video summarization approach that integrates shot segmentation and video summarization into a Hierarchical Structure-Adaptive RNN, denoted as HSA-RNN. We evaluate the proposed approach on four popular datasets, i.e., SumMe, TVsum, CoSum and VTW. The experimental results have demonstrated the effectiveness of HSA-RNN in the video summarization task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HSA-RNN:用于视频摘要的层次结构自适应RNN
尽管近年来视频摘要取得了巨大的成功,但很少有方法意识到视频结构对摘要结果的影响。我们知道,视频数据遵循层次结构,即一个视频由多个镜头组成,一个镜头由多个帧组成。一般来说,镜头为人们理解视频内容提供了活动级别的信息。而现有的摘要方法很少关注镜头分割过程。它们通过一些琐碎的策略生成镜头,例如固定长度分割,这可能会破坏视频数据的底层层次结构,进一步降低生成摘要的质量。为了解决这个问题,我们提出了一种结构自适应视频摘要方法,该方法将镜头分割和视频摘要集成到一个层次结构自适应RNN中,称为HSA-RNN。我们在四个流行的数据集,即SumMe, TVsum, CoSum和VTW上评估了所提出的方法。实验结果证明了HSA-RNN在视频摘要任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1