D. Mendoza, T. Benney, R. Bares, B. Fasoli, Corbin Anderson, Shawn A Gonzales, E. Crosman, S. Hoch
{"title":"Investigation of Indoor and Outdoor Fine Particulate Matter Concentrations in Schools in Salt Lake City, Utah","authors":"D. Mendoza, T. Benney, R. Bares, B. Fasoli, Corbin Anderson, Shawn A Gonzales, E. Crosman, S. Hoch","doi":"10.20944/preprints202201.0185.v1","DOIUrl":null,"url":null,"abstract":"Every day around 93% of children under the age of 15 (1.8 billion children) breathe outdoor air that is so polluted it puts their health and development at serious risk. Due to the pandemic, however, ventilation of buildings using outdoor air has become an important safety technique to prevent the spread of COVID-19. With the mounting ev-idence suggesting that air pollution is impactful to human health and educational out-comes, this contradictory guidance may be problematic in schools with higher air pol-lution levels, but keeping kids COVID-19 free and in school to receive their education is now more pressing than ever. To understand if all schools in an urban area are ex-posed to similar outdoor air quality and if school infrastructure protects children equally indoors, we installed research grade sensors to observe PM2.5 concentrations in indoor and outdoor settings to understand how unequal exposure to indoor and out-door air pollution impacts indoor air quality among high- and low-income schools in Salt Lake City, Utah. Based on this approach, we found that during atmospheric inver-sions and dust events, there was a lag ranging between 35 to 73 minutes for the out-door PM2.5 concentrations to follow a similar temporal pattern as the indoor PM2.5. This lag has policy and health implications and may help to explain the rising concerns re-garding reduced educational outcomes related to air pollution in urban areas. These data and resulting analysis show that poor air quality may impact school settings, and the potential implications with respect to environmental inequality.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollutants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202201.0185.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Every day around 93% of children under the age of 15 (1.8 billion children) breathe outdoor air that is so polluted it puts their health and development at serious risk. Due to the pandemic, however, ventilation of buildings using outdoor air has become an important safety technique to prevent the spread of COVID-19. With the mounting ev-idence suggesting that air pollution is impactful to human health and educational out-comes, this contradictory guidance may be problematic in schools with higher air pol-lution levels, but keeping kids COVID-19 free and in school to receive their education is now more pressing than ever. To understand if all schools in an urban area are ex-posed to similar outdoor air quality and if school infrastructure protects children equally indoors, we installed research grade sensors to observe PM2.5 concentrations in indoor and outdoor settings to understand how unequal exposure to indoor and out-door air pollution impacts indoor air quality among high- and low-income schools in Salt Lake City, Utah. Based on this approach, we found that during atmospheric inver-sions and dust events, there was a lag ranging between 35 to 73 minutes for the out-door PM2.5 concentrations to follow a similar temporal pattern as the indoor PM2.5. This lag has policy and health implications and may help to explain the rising concerns re-garding reduced educational outcomes related to air pollution in urban areas. These data and resulting analysis show that poor air quality may impact school settings, and the potential implications with respect to environmental inequality.