A new machine learning approach for predicting the spectra of meson bound states

A. Yasser, T. A. Nahool, M. Anwar, C. Bowerman, G. A. Yahya
{"title":"A new machine learning approach for predicting the spectra of meson bound states","authors":"A. Yasser, T. A. Nahool, M. Anwar, C. Bowerman, G. A. Yahya","doi":"10.1142/s0218301320500925","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the benefits of machine learning (ML) approaches in predicting the spectra of meson bound states. A linear model (LM) approach is used to predict the spectra of some heavy mesons. Our proposed method has been successfully reproduced in recent experiments, to validate known outcomes. Our results are compared favorably to those obtained using other techniques. This novel perspective opens up a new future in the use of ML in the field of particle physics.","PeriodicalId":14032,"journal":{"name":"International Journal of Modern Physics E-nuclear Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E-nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218301320500925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we investigate the benefits of machine learning (ML) approaches in predicting the spectra of meson bound states. A linear model (LM) approach is used to predict the spectra of some heavy mesons. Our proposed method has been successfully reproduced in recent experiments, to validate known outcomes. Our results are compared favorably to those obtained using other techniques. This novel perspective opens up a new future in the use of ML in the field of particle physics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测介子束缚态谱的一种新的机器学习方法
在本文中,我们研究了机器学习(ML)方法在预测介子束缚态光谱方面的好处。用线性模型(LM)方法预测了一些重介子的谱。我们提出的方法已在最近的实验中成功地重现,以验证已知的结果。我们的结果与使用其他技术获得的结果相比是有利的。这种新颖的视角为机器学习在粒子物理领域的应用开辟了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Folding Analysis of the α+28Si Elastic Scattering System A systematic study of α decay half-lives for Ac, Th, Pa, U and Np isotopes with A = 205-245 using the modified generalized liquid drop model Analytical solution for nuclear plus atomic Hulthen potential-A perturbative approach Role of equation of state and clusterization algorithms on nuclear vaporization Classification of pairing phase transition in the hot nucleus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1