Multi-level Fusion Based 3D Object Detection from Monocular Images

Bin Xu, Zhenzhong Chen
{"title":"Multi-level Fusion Based 3D Object Detection from Monocular Images","authors":"Bin Xu, Zhenzhong Chen","doi":"10.1109/CVPR.2018.00249","DOIUrl":null,"url":null,"abstract":"In this paper, we present an end-to-end multi-level fusion based framework for 3D object detection from a single monocular image. The whole network is composed of two parts: one for 2D region proposal generation and another for simultaneously predictions of objects' 2D locations, orientations, dimensions, and 3D locations. With the help of a stand-alone module to estimate the disparity and compute the 3D point cloud, we introduce the multi-level fusion scheme. First, we encode the disparity information with a front view feature representation and fuse it with the RGB image to enhance the input. Second, features extracted from the original input and the point cloud are combined to boost the object detection. For 3D localization, we introduce an extra stream to predict the location information from point cloud directly and add it to the aforementioned location prediction. The proposed algorithm can directly output both 2D and 3D object detection results in an end-to-end fashion with only a single RGB image as the input. The experimental results on the challenging KITTI benchmark demonstrate that our algorithm significantly outperforms monocular state-of-the-art methods.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"30 1","pages":"2345-2353"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"260","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 260

Abstract

In this paper, we present an end-to-end multi-level fusion based framework for 3D object detection from a single monocular image. The whole network is composed of two parts: one for 2D region proposal generation and another for simultaneously predictions of objects' 2D locations, orientations, dimensions, and 3D locations. With the help of a stand-alone module to estimate the disparity and compute the 3D point cloud, we introduce the multi-level fusion scheme. First, we encode the disparity information with a front view feature representation and fuse it with the RGB image to enhance the input. Second, features extracted from the original input and the point cloud are combined to boost the object detection. For 3D localization, we introduce an extra stream to predict the location information from point cloud directly and add it to the aforementioned location prediction. The proposed algorithm can directly output both 2D and 3D object detection results in an end-to-end fashion with only a single RGB image as the input. The experimental results on the challenging KITTI benchmark demonstrate that our algorithm significantly outperforms monocular state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多层次融合的单目图像三维目标检测
在本文中,我们提出了一个基于端到端多级融合的框架,用于从单眼图像中检测3D目标。整个网络由两部分组成:一部分用于二维区域建议生成,另一部分用于同时预测物体的二维位置、方向、尺寸和三维位置。利用独立的视差估计模块和三维点云计算模块,引入了多层次融合方案。首先,我们用前视特征表示编码视差信息,并将其与RGB图像融合以增强输入;其次,将从原始输入中提取的特征与点云相结合,增强目标检测能力;对于3D定位,我们引入了一个额外的流来直接预测点云的位置信息,并将其添加到前面的位置预测中。该算法只需要一张RGB图像作为输入,就可以以端到端的方式直接输出2D和3D目标检测结果。在具有挑战性的KITTI基准上的实验结果表明,我们的算法明显优于单目最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1