A Novel Framework for Data Extraction from Multiple Repositories and Generation of Ontologies using Inverted Indexing Technique

Sudeepthi Govathoti, M. Babu
{"title":"A Novel Framework for Data Extraction from Multiple Repositories and Generation of Ontologies using Inverted Indexing Technique","authors":"Sudeepthi Govathoti, M. Babu","doi":"10.14257/IJDTA.2017.10.7.07","DOIUrl":null,"url":null,"abstract":"Recent years have observed the tremendous growth of information through the large number of domains available in the web. Social media (LinkedIn, Twitter etc.) concentrate on handling massive data obtaining from various sources. It is a fact that information retrieval and data extraction are difficult tasks in handling the large collection of web documents. Semantic web is a new technology used to handle the massive raw data to transform it into knowledgeable representation. Traditional search engines use page ranking algorithms to find data from a large data sources. The proposed work is aimed at designing a user interface for data extraction from multiple repositories using Uniform Resource Identifiers (URIs) and applying inverted indexing techniques for generation of Ontologies. These methods may be used to develop efficient semantic web knowledge based systems for retrieving relevant information from the web .","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"11 1","pages":"77-88"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2017.10.7.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have observed the tremendous growth of information through the large number of domains available in the web. Social media (LinkedIn, Twitter etc.) concentrate on handling massive data obtaining from various sources. It is a fact that information retrieval and data extraction are difficult tasks in handling the large collection of web documents. Semantic web is a new technology used to handle the massive raw data to transform it into knowledgeable representation. Traditional search engines use page ranking algorithms to find data from a large data sources. The proposed work is aimed at designing a user interface for data extraction from multiple repositories using Uniform Resource Identifiers (URIs) and applying inverted indexing techniques for generation of Ontologies. These methods may be used to develop efficient semantic web knowledge based systems for retrieving relevant information from the web .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种利用倒排索引技术从多个存储库中提取数据和生成本体的新框架
近年来,通过网络上大量可用的域,我们可以观察到信息的巨大增长。社交媒体(LinkedIn, Twitter等)专注于处理从各种来源获得的大量数据。在处理大量的网络文档时,信息检索和数据提取是一项困难的任务。语义网是一种用于处理海量原始数据并将其转化为知识表示的新技术。传统的搜索引擎使用页面排名算法从大型数据源中查找数据。提出的工作旨在设计一个用户界面,使用统一资源标识符(uri)从多个存储库中提取数据,并应用倒排索引技术生成本体。这些方法可用于开发高效的基于语义网知识的系统,用于从网络中检索相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logical Data Integration Model for the Integration of Data Repositories Fuzzy Associative Classification Driven MapReduce Computing Solution for Effective Learning from Uncertain and Dynamic Big Data Decision Tree Algorithms C4.5 and C5.0 in Data Mining: A Review Evaluating Intelligent Search Agents in a Controlled Environment Using Complex Queries: An Empirical Study ScaffdCF: A Prototype Interface for Managing Conflicts in Peer Review Process of Open Collaboration Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1