{"title":"Reflection","authors":"Yang Li","doi":"10.1145/2642918.2647355","DOIUrl":null,"url":null,"abstract":"By knowing which upcoming action a user might perform, a mobile application can optimize its user interface for accomplishing the task. However, it is technically challenging for developers to implement event prediction in their own application. We created Reflection, an on-device service that answers queries from a mobile application regarding which actions the user is likely to perform at a given time. Any application can register itself and communicate with Reflection via a simple API. Reflection continuously learns a prediction model for each application based on its evolving event history. It employs a novel method for prediction by 1) combining multiple well-designed predictors with an online learning method, and 2) capturing event patterns not only within but also across registered applications--only possible as an infrastructure solution. We evaluated Reflection with two sets of large-scale, in situ mobile event logs, which showed our infrastructure approach is feasible.","PeriodicalId":20543,"journal":{"name":"Proceedings of the 27th annual ACM symposium on User interface software and technology","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual ACM symposium on User interface software and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2642918.2647355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

By knowing which upcoming action a user might perform, a mobile application can optimize its user interface for accomplishing the task. However, it is technically challenging for developers to implement event prediction in their own application. We created Reflection, an on-device service that answers queries from a mobile application regarding which actions the user is likely to perform at a given time. Any application can register itself and communicate with Reflection via a simple API. Reflection continuously learns a prediction model for each application based on its evolving event history. It employs a novel method for prediction by 1) combining multiple well-designed predictors with an online learning method, and 2) capturing event patterns not only within but also across registered applications--only possible as an infrastructure solution. We evaluated Reflection with two sets of large-scale, in situ mobile event logs, which showed our infrastructure approach is feasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反射
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designer's augmented reality toolkit, ten years later: implications for new media authoring tools Tag system with low-powered tag and depth sensing camera In-air gestures around unmodified mobile devices CommandSpace: modeling the relationships between tasks, descriptions and features WirePrint: 3D printed previews for fast prototyping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1