Enantioselective acetylation of (R,S)-atenolol: The use of Candida rugosa lipases immobilized onto magnetic chitosan nanoparticles in enzyme-catalyzed biotransformation
Adam Sikora , Dorota Chełminiak-Dudkiewicz , Tomasz Siódmiak , Agata Tarczykowska , Wiktor Dariusz Sroka , Marta Ziegler-Borowska , Michał Piotr Marszałł
{"title":"Enantioselective acetylation of (R,S)-atenolol: The use of Candida rugosa lipases immobilized onto magnetic chitosan nanoparticles in enzyme-catalyzed biotransformation","authors":"Adam Sikora , Dorota Chełminiak-Dudkiewicz , Tomasz Siódmiak , Agata Tarczykowska , Wiktor Dariusz Sroka , Marta Ziegler-Borowska , Michał Piotr Marszałł","doi":"10.1016/j.molcatb.2016.09.017","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the enzyme immobilization protocol as well as the enzymatic method for the direct resolution of (<em>R</em>,<em>S</em>)-atenolol. The used magnetic enzyme carriers possess on their surface new-synthetized chitosan derivatives with free amine groups distanced by ethyl or butyl chain. Additionally the catalytic activity of two types of commercially available lipases from <em>Candida rugosa</em> immobilized onto two different magnetic nanoparticles were compared. The highest values of enantioselectivity (E<!--> <!-->=<!--> <!-->66.9), enantiomeric excess of product (ee<sub>p</sub> <!-->=<!--> <!-->94.1%) and conversion (c<!--> <!-->=<!--> <!-->41.84%) were obtained by using lipase from <em>Candida rugosa</em> OF immobilized onto Fe<sub>3</sub>O<sub>4</sub>-CS-EtNH<sub>2</sub>. The study confirmed that even after 5 reaction cycles the immobilized lipase maintain its high catalytic activity.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"134 ","pages":"Pages 43-50"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.09.017","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716301916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 27
Abstract
This paper describes the enzyme immobilization protocol as well as the enzymatic method for the direct resolution of (R,S)-atenolol. The used magnetic enzyme carriers possess on their surface new-synthetized chitosan derivatives with free amine groups distanced by ethyl or butyl chain. Additionally the catalytic activity of two types of commercially available lipases from Candida rugosa immobilized onto two different magnetic nanoparticles were compared. The highest values of enantioselectivity (E = 66.9), enantiomeric excess of product (eep = 94.1%) and conversion (c = 41.84%) were obtained by using lipase from Candida rugosa OF immobilized onto Fe3O4-CS-EtNH2. The study confirmed that even after 5 reaction cycles the immobilized lipase maintain its high catalytic activity.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.