B. Singh, O. P. Jakhar, Ravi Kumar, C. S. Rajoriya
{"title":"Experimental analysis and mathematical modelling of ginger using different solar drying systems","authors":"B. Singh, O. P. Jakhar, Ravi Kumar, C. S. Rajoriya","doi":"10.56042/ijems.v29i2.46477","DOIUrl":null,"url":null,"abstract":"Fruits and vegetables are perishable; they don’t have a shelf life. They contain so much water that their logistic become difficult. Drying is both heat and mass exchange energy activity, mainly utilized as a food preservation technique. Fresh collected ginger has effectively dried from starting moisture content of 86% wet basis (w.b.) to the safe storage moisture content of 13% - 14% (w.b.) in Open Sun Drying (OSD) and hot air oven solar dryers. It has been found that the hot air dryer of the glass-to-glass module took less time (8hrs) as compared to the hot air dryer of an opaque module (10hrs) and Open Sun Drying (OSD) (14hrs). The drying behavior of ginger slices have been analyzed using various mathematical models. Page model has explained the drying behavior of ginger precisely with maximum values of coefficient of determinationi.e.,0.996, 0.997, and 0.994for hot air dryer of glass-to-glass module, opaque module, and OSD respectively, and has minimum reduced chi-square, mean bias error, and root mean square error.","PeriodicalId":13464,"journal":{"name":"Indian Journal of Engineering and Materials Sciences","volume":"80 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Engineering and Materials Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.56042/ijems.v29i2.46477","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Fruits and vegetables are perishable; they don’t have a shelf life. They contain so much water that their logistic become difficult. Drying is both heat and mass exchange energy activity, mainly utilized as a food preservation technique. Fresh collected ginger has effectively dried from starting moisture content of 86% wet basis (w.b.) to the safe storage moisture content of 13% - 14% (w.b.) in Open Sun Drying (OSD) and hot air oven solar dryers. It has been found that the hot air dryer of the glass-to-glass module took less time (8hrs) as compared to the hot air dryer of an opaque module (10hrs) and Open Sun Drying (OSD) (14hrs). The drying behavior of ginger slices have been analyzed using various mathematical models. Page model has explained the drying behavior of ginger precisely with maximum values of coefficient of determinationi.e.,0.996, 0.997, and 0.994for hot air dryer of glass-to-glass module, opaque module, and OSD respectively, and has minimum reduced chi-square, mean bias error, and root mean square error.