Analysis of L Band Radar Data Over Tropical Agricultural Areas

M. Zribi, M. Sekhar, S. Bandyopadhyay, S. Bousbih, A. Al Bitar, S. K. Tomer, N. Baghdadi
{"title":"Analysis of L Band Radar Data Over Tropical Agricultural Areas","authors":"M. Zribi, M. Sekhar, S. Bandyopadhyay, S. Bousbih, A. Al Bitar, S. K. Tomer, N. Baghdadi","doi":"10.1109/IGARSS.2019.8899079","DOIUrl":null,"url":null,"abstract":"The abstract should appear at the top of the left-. The main objective of this study is to analyze the potential use of L-band radar data for the estimation of soil moisture in agricultural tropical areas. Simultaneously to several radar acquisitions made between June and October 2018, using ALOS2-PALSAR sensor over the Berambadi site (south of India), ground measurements of soil roughness, soil water content, LAI were recorded. The sensitivity of the ALOS-2 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study, even for dense crops. The radar signals are simulated using different types of backscattering models (physical and semi-empirical) over bare soil and vegetation cover for different types of crops (tumeric, etc). WCM model parameterized with LAI for vegetation contribution allows a good estimation of soil moisture for tumeric.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"28 1","pages":"6215-6218"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The abstract should appear at the top of the left-. The main objective of this study is to analyze the potential use of L-band radar data for the estimation of soil moisture in agricultural tropical areas. Simultaneously to several radar acquisitions made between June and October 2018, using ALOS2-PALSAR sensor over the Berambadi site (south of India), ground measurements of soil roughness, soil water content, LAI were recorded. The sensitivity of the ALOS-2 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study, even for dense crops. The radar signals are simulated using different types of backscattering models (physical and semi-empirical) over bare soil and vegetation cover for different types of crops (tumeric, etc). WCM model parameterized with LAI for vegetation contribution allows a good estimation of soil moisture for tumeric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热带农业区L波段雷达数据分析
摘要应该出现在左上角。本研究的主要目的是分析l波段雷达数据在农业热带地区土壤湿度估算中的潜在用途。2018年6月至10月期间,在Berambadi站点(印度南部)使用ALOS2-PALSAR传感器进行了几次雷达采集,同时记录了土壤粗糙度、土壤含水量和LAI的地面测量值。ALOS-2测量对土壤湿度变化的敏感性已在几份科学出版物中得到报道,这在本研究中得到证实,即使对密实作物也是如此。雷达信号使用不同类型的后向散射模型(物理和半经验)在裸地和不同类型作物(姜黄等)的植被覆盖上进行模拟。以LAI作为植被贡献参数的WCM模型可以很好地估计草本植物的土壤湿度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1